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Lab 5: Multicore and Networking

Handed out: Tuesday, April 14, 2020
Due: Friday, May 1, 2020

Introduction 

So far, our kernel has u�lized only one core among four cores on a RPi board. In this
assignment, you will enable the other three cores and adjust the exis�ng components to
correctly run programs in parallel. A�er that, you will integrate an exis�ng Ethernet
implementa�on for RPi (USPi) and a minimal TCP stack (smoltcp) to our kernel, so that our
host computer and the Raspberry Pi board can communicate via an Ethernet cable. Finally,
you will write an echo server as a user program on our kernel and interact with that server
from your host computer with netcat command.

Phase 0: Getting Started

Fetch the update for lab 5 from our git repository to your development machine.

$ git fetch skeleton 
$ git merge skeleton/lab5 

This is the directory structure of our repository. The directories you will be working on this
assignment are marked with *.

https://tc.gts3.org/cs3210/2020/spring/index.html
https://tc.gts3.org/cs3210/2020/spring/lab.html


. 
├── bin : common binaries/utilities 
├── doc : reference documents 
├── ext : external files (e.g., resources for testing) 
├── tut : tutorial/practices 
│    ├── 0-rustlings 
│    ├── 1-blinky 
│    ├── 2-shell 
│    ├── 3-fs 
│    ├── 4-spawn 
│    └── 5-multicore : questions for lab5 * 
├── boot : bootloader 
├── kern : the main os kernel * 
├── lib  : required libraries 
│     ├── aarch * 
│     ├── kernel_api * 
│     ├── fat32 
│     ├── pi * 
│     ├── shim 
│     ├── stack-vec 
│     ├── ttywrite 
│     ├── volatile 
│     └── xmodem 
└── user : user level program * 
      ├── fib 
      ├── sleep 
      └── socket * 

Merge Guideline

You may need to resolve conflicts before con�nuing. For example, if you see a message that
looks like:

Auto-merging kern/src/main.rs 
CONFLICT (content): Merge conflict in kern/src/main.rs 
Automatic merge failed; fix conflicts and then commit the result. 

You will need to manually modify the main.rs  file to resolve the conflict. Ensure you keep all
of your changes from lab 4. Once all conflicts are resolved, add the resolved files with
git add  and commit. For more informa�on on resolving merge conflicts, see this tutorial on

githowto.com.

Various design has been changed from lab 4. See the following summary of change for a
merge guideline.

Safe / Unsafe changes

Several safe / unsafe defini�ons have been changed to conform be�er with Rust’s safety
guarantee. If there is a merge conflict in this regard, follow the updated defini�on.
Scheduler

https://githowto.com/resolving_conflicts


GlobalScheduler now uses Box  in the defini�on. Update Scheduler::new()  func�on
accordingly.
Move �mer manipula�on from start()  to initialize_global_timer_interrupt()  method.
Call this func�on in GlobalScheduler::start() .

PageTable

The value of IO_BASE_END  has been increased to allow the kernel to access the local �mer
address. To support that, the kernel page table now uses three L3 entries instead of two.
Adjust related func�ons in kern/src/vm/pagetable.rs .
VMM

VMM includes more fields than before. Calculate the base address of the kernel table in
initialize() , and save it to kern_pt_addr  field with
self.kern_pt_addr.store(kern_pt_addr, Ordering::Relaxed); . You will learn what this line

means throughout this lab.

In addi�on, setup()  is not called automa�cally in initialize()  anymore. This is to
separate the behavior of ini�alizing the virtual memory manager and se�ng up the MMU
for the current core, so that they can be invoked independently with mul�ple cores. You
have to add VMM.setup()  call in kmain() , right a�er VMM.initialize() .
IRQ / Traps

IRQ has been redesigned to use trait-based logic. Read the change in
kern/src/traps/irq.rs . Update the register()  and invoke()  func�on, and also
handle_exception()  as necessary.
write_str  syscall

In the previous lab, there was only a write()  syscall which prints a single byte to the
serial. We have added write_str()  syscall, which takes a slice from the user and prints it
atomically. kernel_api  library has been updated to use this; Recompile your user
programs and copy them to the SD card.

Logging infrastructure

Our kernel code now uses Rust’s log  crate instead of kprintln!  for message logging. It
enables five logging macros trace! , debug! , info! , warn! , and error! .

The logging code is defined in kern/src/logger.rs . If VERBOSE_BUILD  environment variable is
set during the build (e.g., VERBOSE_BUILD=1 make ), all logs will be enabled. Otherwise, trace level
logs will not be displayed. There is no specific requirement for what level of log you should
use in each circumstance, but here is a brief guideline:

Trace: A piece of informa�on that will help debugging the kernel, but too verbose to be
enabled by default

Scheduler switch log
IRQ interrupt log



Debug: A piece of informa�on that developers might be interested

Page table address

Info: A piece of informa�on that the user of the kernel might be interested

Amount of memory in the system
Kernel ini�aliza�on status

Warn: An indica�on of excep�onal erroneous situa�on

Out of memory
Unknown excep�on from a user program

Error: An indica�on of an event that should never happen during the normal execu�on of
the kernel

Debug asser�on viola�ons
Unknown excep�on inside a kernel

ARM Documentation

Along with three documents that we referred in lab 4,

ARMv8 Reference Manual

This is the official reference manual for the ARMv8 architecture. This is a wholis�c
manual covering the en�re architecture in a general manner. For the specific
implementa�on of the architecture for the Raspberry Pi 3, see the ARM Cortex-A53
Manual. We will be referring to sec�ons from this manual with notes of the form (ref:
C5.2) which indicates that you should refer to sec�on C5.2 of the ARMv8 Reference
Manual.

ARM Cortex-A53 Manual

Manual for the specific implementa�on of the ARMv8 (v8.0-A) architecture as used by
the Raspberry Pi 3. We will be referring to sec�ons from this manual with notes of the
form (A53: 4.3.30) which indicates that you should refer to sec�on 4.3.30 of the ARM
Cortex-A53 Manual.

ARMv8-A Programmer Guide

A high-level guide on how to program an ARMv8-A process. We will be referring to
sec�ons from this manual with notes of the form (guide: 10.1) which indicates that
you should refer to sec�on 10.1 of the ARMv8-A Programmer Guide.

We will use two addi�onal document in lab 5.

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARM-Cortex-A53-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARM-Cortex-A53-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARM-Cortex-A53-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf


AArch64 Programmer’s Guides: Generic Timer

A guide for the generic �mer in ARM architecture. We will be refering to sec�ons from
this manual with notes of the form (�mer: 3.2) which indicates that you should refer to
sec�on 3.2 of the AArch64 Programmer’s Guides: Generic Timer.

Quad-A7 Control

A guide for Quad-A7 core control, which includes descrip�ons for per-core �mer and
interrupt handling. We will be refering to sec�ons from this manual with notes of the
form (QA7: 4.10) which indicates that you should refer to sec�on 4.10 of the Quad-A7
Control.

You can find all those five documents under doc/  subdirectory of our lab repo. We
recommend that you download these five documents now and maintain them within easy
reach.

Phase 1: Enabling Multicore

Lab 4 covered preemp�ve scheduling, which allowed mul�ple user programs to run inside a
single kernel at the same �me by means of context switching. Note that although mul�ple
programs were running on our kernel concurrently, only one user program occupied the core
at a �me. In this phase, you will enable the other three cores of RPi board and support
running user programs in parallel. Parallel programming involves many indigenous problems
that do not exist in single-thread programming. To fix this, you’ll revisit the design of mutex,
IRQ handler, and scheduler and adjust them accordingly to mul�core environment.

Subphase A: Waking Up Other Cores

In this subphase, you’ll enable the three other cores of BCM2837 using the spin table
mechanism.

Spin Table

All cores in a CPU share the main memory (RAM), thus it can be used as a communica�on
medium among cores. Spin table is a boo�ng mechanism that u�lizes this characteris�cs of
RAM. When you power on your RPi, the first core, core 0, will jump to _start  func�on
defined in kern/src/init.rs . All the other cores are spinning outside of the kernel, polling
their spinning address.

This code from RPi firmware implements the spin table mechanism.

https://tc.gts3.org/cs3210/2020/spring/r/aarch64-generic-timer.pdf
https://tc.gts3.org/cs3210/2020/spring/r/aarch64-generic-timer.pdf
https://tc.gts3.org/cs3210/2020/spring/r/aarch64-generic-timer.pdf
https://tc.gts3.org/cs3210/2020/spring/r/QA7_rev3.4.pdf
https://tc.gts3.org/cs3210/2020/spring/r/QA7_rev3.4.pdf
https://tc.gts3.org/cs3210/2020/spring/r/QA7_rev3.4.pdf
https://github.com/raspberrypi/tools/blob/b0c869bc929587a7e1d20a98e2dc828a24ca396a/armstubs/armstub8.S#L132-L154


in_el2: 
    mrs x6, MPIDR_EL1 
    and x6, x6, #0x3 
    cbz x6, primary_cpu 
 
    adr x5, spin_cpu0 
 
secondary_spin: 
    wfe 
    ldr x4, [x5, x6, lsl #3] 
    cbz x4, secondary_spin 
    mov x0, #0 
    b boot_kernel 
 
primary_cpu: 
    ldr w4, kernel_entry32 
    ldr w0, dtb_ptr32 
 
boot_kernel: 
    mov x1, #0 
    mov x2, #0 
    mov x3, #0 
    br x4 

When RPi boots, core 0 loads the kernel address from symbol kernel_entry32  and branch to
that address. The RPi firmware will fill kernel_entry32  with kernel_address  value specified in
config.txt  before this rou�ne. All the other cores spin inside secondary_spin  loop with wfe .

While looping, they load 8 bytes address from spin_cpu0 + 8 * core_idx , and branch to that
address if it is non-zero. Therefore, in order to wake up other cores, core 0 needs to write the
star�ng address to their spinning address and send events with sev  instruc�on. You’ll use
init::start2  as an entrypoint for other cores.

Each core should use its own stack pointer to not interfere with the other cores. Func�on
_start  assigns KERN_STACK_BASE  as the stack register for core 0. In our kernel design, core
i+1  will use the stack right below the stack of core i . That is,
KERN_STACK_BASE - KERN_STACK_SIZE * i  for core i .

Implementation

Now you’re ready to implement the core ini�aliza�on rou�ne. You’ll write kmain()  in
kern/src/main.rs  and initialize_app_cores() , start2() , and kmain2()  in kern/src/init.rs .

You can implement these func�ons in any order you wish:

In initialize_app_cores()  , write the address of start2()  to each core’s spinning address.



The spinning base, spin_cpu0 , is defined as a constant SPINNING_BASE  in
pi/src/common.rs . Core 0 should calculate each core’s spinning address, write the

address of start2()  to those addresses, invoke sev() , and wait for each core’s
acknowledgement. Other cores should write 0 to their spinning address in kmain2()

when they are fully awoken. Core 0 should check that all cores’ spinning address has
been overwri�en with 0 before returning from initialize_app_cores() .

In start2()  , setup the stack pointer and branch to kinit2()  .

Set the stack pointer as described above. Recall that you can extract the core index
from MPIDR_EL1 . Then, branch to kinit2  a�er se�ng up the stack register. Be careful
not to use any stack variable in start2() , since we are changing the stack pointer.

 aarch64::affinity()  might not work

aarch64::affinity()  is not guaranteed to be inlined, and it might use the stack
space to call the func�on. Because we don’t set the stack pointer yet, you may not
be able to use aarch64::affinity() . Try to access MPIDR_EL1  register directly.

In kmain2()  , print a message and acknowledge that the core is available.

If the ini�aliza�on is successful, each core will reach kmain2()  and start execu�ng it in
EL1. In kmain2() , write 0 to the core’s spinning address to no�fy core 0. Then print
any message to the console and loop indefinitely. You’re welcome to use the newly
added logging macros.

When you finish wri�ng the code, change your kmain()  like this:

unsafe fn kmain() -> ! { 
    ALLOCATOR.initialize(); 
    FILESYSTEM.initialize(); 
    VMM.initialize(); 
    SCHEDULER.initialize(); 
 
    init::initialize_app_cores(); 
    VMM.setup(); 
 
    SCHEDULER.start(); 
} 

If you run the kernel on RPi board, you should see ini�aliza�on message from each core.
However, these new cores are not doing any useful works yet, because some components in
our kernel are not parallel-ready. The next step is to fix those outdated designs!

 Beware of unsound Mutex!



Note that our mutex is unsound, so kprintln!()  and logging macros, which internally uses
mutex, may deadlock or even trigger a data race when accessed by mul�ple cores. This
should be a rare case, and if you retry enough �me, you should see a successful case. We
are going to fix this soon.

 How to detect spinning base without hard coding the address? (spin-address)

We have hardcoded the spin address of Raspberry Pi to our kernel, so the kernel won’t
run on another hardware if they use different spin address. How does Linux kernel solve
this problem?

Subphase B: Mutex, Revisited

The mutex code in our skeleton code doesn’t provide an actual thread safety and lies to Rust
compiler by unsafely implemen�ng Send and Sync trait. We did this because atomic memory
opera�ons required for thread-safe mutex implementa�on is only available when MMU is
ini�alized in AArch64 architecture, which was merely added in lab 4. We jus�fied our design
with the fact that there is only one core available in the system, but since we have both
MMU and mul�ple cores enabled now, it is the �me to correct that lie. In this subphase, you’ll
fix the mutex design so that mul�ple cores can use mutex in a sound manner. You will be
working in kern/src/mutex.rs .

Per-core Data Management

When mul�ple cores are ac�ve in a kernel, the kernel must dis�nguish per-kernel resource
ini�aliza�on and per-core resource ini�aliza�on. Per-kernel resource needs to be ini�alized
only once per startup. In our kernel, per-kernel resources are defined in main.rs . Sta�c
structs such as ALLOCATOR , FILESYSTEM , and SCHEDULER  are per-kernel resources. Core 0 should
ini�alize per-kernel resources before waking up other cores. On the other hand, per-core
resource must be ini�alized for each core in kmain()  and kmain2() .

Now go ahead and read per-core resource defini�ons in kern/src/percore.rs . Each PerCore

struct has three data fields: preemption , mmu_ready , and local_irq . preemption  counts the
number of lock held by the core, mmu_ready  flag saves whether MMU is set for each core, and
finally local_irq  saves IRQ handler for each local interrupt.

You may no�ce atomic types used in the defini�on of PerCore  struct. For now, think of them
as a plain type with internal mutability. We will discuss about atomic types in detail later.

Then, start reading code in kern/src/vm.rs . In lab 4, setup()  was called directly in
initialize() , and core 0 immediately ini�alized its MMU a�er ini�alizing the virtual memory

manager. However, in lab 5, the role of them are separated. Core 0 ini�alizes the virtual
memory manager during the global ini�aliza�on rou�ne, and each core, including core 0, sets
up its MMU a�er the core ini�aliza�on is done.



We have provided a par�al implementa�on of wait() . See how it calls setup()  and, how
set_mmu_ready()  and is_mmu_ready()  is used to track per-core MMU ini�aliza�on informa�on.

Later you’ll fill the rest of the code so that each core loops and waits un�l the MMU
ini�aliza�on of all cores finishes and returns together.

Memory Consistency Model

Recall that RAM is shared among all cores. When mul�ple cores are reading to and wri�ng
from a same address, in which order they would read and write a value? What can be the
observable output from a program? Can the same program behave differently on x86-64 and
AArch64? Architectures’ memory consistency model specifies the answer to these ques�ons.

Let’s look at a classic example of memory ordering, where two threads are muta�ng values
and prin�ng them. Rust’s type system prevents this example to compile without an unsafe
block, but let’s assume that this code was wri�en in a racy variant of Rust for the perpose of
demonstra�on. Assume A and B are both ini�alized to 0.

/* Thread 1 */ 
A = 1; // (1) 
print!("{}", B); // (2) 
 
/* Thread 2 */ 
B = 1; // (3) 
print!("{}", A); // (4) 

One of the most intui�ve memory consistency model is sequen�al consistency (SC). It
assumes two things: (1) there is a global order of all reads and writes, and (2) the interleaving
preserves the order of instruc�ons from the same thread (program order). In sequen�al
consistency, one of possible output of the above program is 01 , where one thread completes
the execu�on before the other thread start the execu�on. The order of the program that
prints this result 1-2-3-4 or 3-4-1-2. 11  is slightly less obvious output, where the execu�on
of two threads are interleaved, for example like 1-3-2-4 or 3-1-2-4. In this model, 00  is not a
valid output of the above program.

Mul�thread vs Mul�core

Strictly speaking, mul�thread and mul�core are different concepts. If mul�ple threads are
running on a single core, there is no memory consistency problem. However, almost every
CPU has mul�ple cores these days, and two terms are used somewhat interchangably.
When you see a term “mul�ple threads” in this lab document, you can assume that it
implies mul�ple threads running on a mul�core CPU if not stated otherwise.

Modern CPUs leverage numerous op�miza�ons such as out-of-order execu�on, per-core
caches, and load/store op�miza�on which significantly improves the execu�on performance.
Unfortunately, SC is too strict to permit these op�miza�ons. SC requires a global ordering of



every memory opera�on running in mul�ple cores, which is essen�ally requiring single
threaded behavior for mul�core architecture. In result, modern architectures adopt weaker
memory consistency model than SC.

Each core in Cortex-A53 has its own instruc�on and data cache

Total store ordering (TSO) is slightly weaker consistency model than SC. It allows store
buffering, which may delay the propaga�on of write opera�ons to other cores. This
weakening allows significant performance improvement over the SC model, and x86 and x86-
64 specifies a memory consistency that is very similar to TSO.

TSO upholds many guarantees of SC, but it allows a behavior that is ruled out by SC. Let’s
look at the example code again:

/* Thread 1 */ 
A = 1; // (1) 
print!("{}", B); // (2) 
 
/* Thread 2 */ 
B = 1; // (3) 
print!("{}", A); // (4) 

Under TSO model, it is possible to observe the result 00  from this program. If A = 1  is
stored in thread 1’s cache and B = 1  is stored in thread 2’s cache, and each thread con�nues
the execu�on before the write propagates to each other, they may both print 0 as the result.
This is not an allowed behavior under SC.

ARM architecture specifies even weaker memory model. Consider the following program:

https://tc.gts3.org/cs3210/2020/spring/_images/a53-diagram.jpg


/* Thread 1 */ 
B = 1; // (1) 
A = 1; // (2) 
 
/* Thread 2 */ 
print!("{}", A); // (3) 
print!("{}", B); // (4) 

In ARM consistency model, surprisingly the program can print 10  as a result. Which means,
thread 2 may observe the writes from thread 1 in different order from the order that they are
wri�en in thread 1. Under TSO, this is not allowed because subsequent writes become visible
to other cores in the order that they have wri�en (hence the name, “total store ordering”).

ARM architecture said to have “weak memory ordering with data dependency”. In weak
memory ordering model, in general, there is no consistency guarantee between two different
memory loca�ons regardless of the program order. However, if a value in one memory
loca�on depends on a value in another memory loca�on, there is a data dependency
guarantee.

Consider the following two examples:

/* Program 1 */ 
A = 1; // (1) 
B = 1; // (2) 
 
/* Program 2 */ 
C = 1; // (3) 
D = C; // (4) 

In program 1, A and B are independent memory loca�ons, so other threads may observe (2)
before (1). However, in program 2, the value of D depends on the value of C, so if other
threads observe 1 at memory loca�on D, they are guaranteed to observe 1 at memory
loca�on C.

Memory consistency example (consistency-handson)

Using two threads, write an example that will print different set of results on SC, TSO, and
ARM hardware. Specify what can be printed on each memory consistency model.

Moreover, not only hardware, but also a language defines its memory consistency model.
When a compiler op�mizes program code, it might reorder or even completely remove
certain statements based on the language specifica�on.



/* program 1 */ 
let mut x = &mut 1; 
for i in 0..1000 { 
    println!("{}", *x); 
} 
 
/* program 2 */ 
for i in 0..1000 { 
    println!("{}", 1); 
} 

In the above code snippet, program 1 and 2 are equivalent if there is no other thread
modifying the variable x  during the loop. Is it valid for Rust compiler to op�mize program 1
to program 2? Recall that Rust’s mutable reference implies the exclusive access to the
underlying value. Thus, the answer is yes in Rust; The compiler can op�mize program 1 to
program 2 based on the assump�on that x  is a unique access to the underlying memory
loca�on. To tell the compiler that x  might be modified by other threads, a raw pointer or an
UnsafeCell  must be used instead of a mutable reference &mut .

Memory Barrier and Atomic Instruction

As you should have felt at this point, wri�ng a correct parallel program is substan�ally harder
than wri�ng a correct single-threaded program. Parallel programming involves numerous
cogni�ve pi�alls, and AArch64’s weak memory consistency model further complicates the
reasoning of a parallel program.

Memory barriers and atomic instruc�ons are tools that an architecture provide to tame the
complexity of memory ordering. They allow programmers to manually introduce stronger
memory ordering guarantee in localized, controlled manner. At language level, they also
provide a way to write a portable code that can be compiled to several architectures with
different memory consistency guarantee.

Memory barrier ensures the dependency between the instruc�ons before and a�er the
barrier. With memory barrier, it is possible to explicitly specify the dependency between
instruc�ons before and a�er the barrier when strong memory ordering guarantee is required
for program correctness.

In ARM architecture, there are three kinds of memory barrier instruc�ons (ref: B2.3.5). By
default, they act as a full system barrier opera�on, which fully synchronizes the instruc�ons
before and a�er the barrier (according to their instruc�on type). You can adjust the behavior
with op�on parameter, such that they only wait for specific instruc�on types. For instance, it
is possible to make them wait only for stores, not for load.

DMB, Data Memory Barrier



Data memory barrier acts as a memory barrier. It ensures that all explicit memory
access that appear in program order before the DMB instruc�on are observed before
any explicit memory access that appear in program order a�er the DMB instruc�on.

DSB, Data Synchroniza�on Barrier

Data Synchroniza�on Barrier acts as a special kind of memory barrier. No instruc�on
in program order a�er this instruc�on executes un�l this instruc�on completes.

ISB, Instruc�on Synchroniza�on Barrier

Instruc�on Synchroniza�on Barrier flushes the pipeline in the processor, so that all
instruc�ons following the ISB are fetched from cache or memory, a�er the instruc�on
has been completed.

 Barriers in context_restore  (context-restore-barrier)

Recall these four instruc�ons that we put a�er overwri�ng TTBR registers in lab 4.
Explain what do these lines mean, and why they are needed when upda�ng a page table.

dsb     ishst 
tlbi    vmalle1 
dsb     ish 
isb 

Atomic instruc�on is another tool that architectures provide to facilitate parallel
programming. Atomic instruc�ons guarantee that it is not possible to par�ally perform
certain ac�ons.

/* thread 1 */ 
mov x0, #0 
mov x1, addr of counter 
loop: 
    ldr x2, [x1] 
    add x2, x2, #1 
    str x2, [x1] 
    add x0, x0, #1 
    cmp x0, #1000 
    ble loop 
 
/* program 2 */ 
mov x0, #0 
mov x1, addr of counter 
loop: 
    ldr x2, [x1] 
    add x2, x2, #1 
    str x2, [x1] 
    add x0, x0, #1 
    cmp x0, #1000 
    ble loop 



Consider the above program, where two threads are incremen�ng the same memory address.
They both loop 1000 �mes, so ideally the counter should contain 2000 when the threads
finish the execu�on. Sadly, the increment is not performed in an atomic manner, so each
thread can read the “intermediate” value of each other. The program does not prevent thread
2 to load the value of the counter between the �me frame of thread 1’s load and store. When
it happens, both thread 1 and 2 write the same value to the counter, resul�ng in the counter
to be only incremented by one instead of two.

Atomic instruc�ons help resolving this problem by either performing an ac�on in non-
preemp�ve manner (single instruc�on to perform fetch and add) or provide a mechanism to
detect the data conten�on so that the opera�on can be retried. They are building blocks for
higher level synchroniza�on primi�ves such as mutex. Check ARMv8-A Architecture
Reference Manual C3.2.12-14 and ARMv8-A Synchroniza�on Primi�ves document to read
more about AArch64’s atomic instruc�ons.

Wri�ng atomic assembly code (atomic-handson)

Rewrite the above program with atomic instruc�ons, so that the answer is always correct.

 Check your architecture version

You should check the architecture version when wri�ng an atomic instruc�on. For
instance, CAS, compare and swap instruc�on is only available a�er ARMv8.1 and cannot
be used in ARMv8. If you are using Rust, the LLVM backend will automa�cally handle this.

Except the case when you work at low-level inline assembly level, you should use atomic data
types such as AtomicBool and AtomicUsize provided by Rust’s standard library. They provide
high-level atomic opera�ons such as fetch_and()  and compare_and_swap() . Even if the
architecture does not support them as a single opera�on, the compiler will preserve the
seman�cs and implement them with several smaller atomic opera�ons.

impl AtomicBool { 
    pub fn fetch_and(&self, val: bool, order: Ordering) -> bool { ... } 
} 
 
impl AtomicUsize { 
    pub fn compare_and_swap( 
        &self, 
        current: usize, 
        new: usize, 
        order: Ordering 
    ) -> usize { ... } 
} 

https://doc.rust-lang.org/core/sync/atomic/struct.AtomicBool.html
https://doc.rust-lang.org/core/sync/atomic/struct.AtomicUsize.html


Note the &self  requirement in those opera�ons. A non-mutable reference in Rust implies
that the access to the value is shared. Although mul�ple code accesses the value at the same
�me, atomic opera�ons guarantee that there will be no data race. Thus, it is valid to use
&self  instead of &mut self  in these opera�ons.

A visualiza�on of acquire and release seman�cs

These atomic instruc�ons accept an Ordering  parameter. Rust provides five memory
orderings, which are the same as those of C++20. Relaxed ordering provides atomic opera�on
without ordering guarantee. Acquire and release orderings are used in pair; A load with
acquire ordering prevents instruc�ons a�er load to be reordered before it, and a store with
release ordering prevents instruc�ons before store to be reordered a�er it. In result, an
acquire-release pair of an address creates a cri�cal region that prevents instruc�ons between
them from being reordered to outside of the cri�cal region. In addi�on, if thread A writes to a
variable with release ordering and thread B reads the same variable with acquire ordering, all
subsequent loads in thread B can see stores from thread B before the write with release
ordering. AcqRel is Acquire plus Release for atomic instruc�ons that perform both load and
store. SeqCst is AcqRel with the addi�onal guarantee that all threads see sequen�ally
consistent opera�ons in the same order.

 Further reading

Chapter 8 of Rustonomicon contains a summary of what we have covered.

Implementation

Now you have enough knowledge to fix the mutex code. You will primarily working in
kern/src/mutex.rs , while fixing other func�ons in kern/src/vm.rs , kern/src/main.rs , and
kern/src/init.rs .

https://tc.gts3.org/cs3210/2020/spring/_images/acq-rel.svg
https://doc.rust-lang.org/core/sync/atomic/enum.Ordering.html
https://en.cppreference.com/w/cpp/atomic/memory_order
https://doc.rust-lang.org/nomicon/concurrency.html


First, start with per-core MMU ini�aliza�on. Add VMM.wait()  to kmain()  like below:

unsafe fn kmain() -> ! { 
    ALLOCATOR.initialize(); 
    FILESYSTEM.initialize(); 
    VMM.initialize(); 
    SCHEDULER.initialize(); 
 
    init::initialize_app_cores(); 
    VMM.wait(); 
 
    SCHEDULER.start(); 
} 

Then, modify kmain2()  in kern/src/init.rs  so that it calls VMM.wait()  a�er wri�ng 0 to its
spinning address to acknowledge the core boot sequence. Once you are finished, print any
message inside an infinite loop in the next line.

Next, finish the implementa�on of wait()  in kern/src/vm.rs . Specifically, a�er each core
setup its MMU by calling setup()  (which is included in the skeleton code), increment the
ready_core_cnt  by one and loop un�l the count reaches the number of core,
pi::common::NCORES . Think about which atomic ordering should be used here.

The provided mutex code used relaxed load and store, which do not synchronize among
cores. Therefore, if you test your code at this point, the prin�ng result from cores can be
mixed together or some�mes the kernel even deadlocks and stops making progress.

Now, fix try_lock()  and unlock()  in kern/src/mutex.rs . You need to use atomic opera�ons as
well as APIs in kern/src/percore.rs  to properly implement the mutex. Specifically, use
is_mmu_ready()  to check whether MMU is enabled or disabled, getcpu()  to increment core’s

preemp�on counter when you lock a mutex, and putcpu()  to decrement core’s preemp�on
counter when you unlock a mutex.

Here is the descrip�on of how mutex should behave when MMU is enabled and disabled:

When MMU is disabled

A mutex in this state is used when core 0 is ini�alizing per-kernel resources. If MMU is
disabled, general atomic opera�ons are not available except relaxed load and store. As
such, we will only allow core 0 to use mutex when MMU is disabled. If only one core is
accessing the mutex, these opera�ons are sufficient to implement a mutex. In fact, it can
be thought as a mutable-only version of RefCell .

You can reuse most of the current mutex code to implement this. Add the necessary
checks to make sure your mutex follows Rust’s safety requirement.

 Hint



The original mutex code supported reentrancy, which allows the owner of a mutex to
lock it more than once. However, this design is not compa�ble with Rust’s one
mutable owner model in general. You don’t have to implement this when you fix the
mutex design.

When MMU is enabled

When MMU is enabled, perform correct locking and unlocking with atomic opera�ons.
The overall code structure will look similar with the MMU-disabled state, but instead of
relaxed load and store, atomic opera�ons such as compare_and_swap  or swap  should be
used with correct ordering parameter. Check APIs of AtomicBool and choose whatever
atomic opera�on you want.

When you are done, messages from each core should be printed line by line without any
overlap or deadlock. Double check your implementa�on even if you get the expected
behavior. Parallel code is indeterminis�c in nature, which makes bugs in them very hard to be
reproduced and fixed. It’s much be�er to take �me now and prevent those bugs than be
puzzled with inscrutable behaviors later. If you feel confident of your design, con�nue to the
next subphase.

 Be careful not to use mutex before MMU ini�aliza�on

If you have followed the instruc�on correctly, Mutex  will assert that the core number is
equal to 0 when MMU is not ini�alized for the current core. If other core tries to use
mutex before MMU ini�aliza�on, it will halt the core with infinite recursion, because
assert!()  calls kprintln!() , kprintln!()  calls Mutex::lock() , and Mutex::lock()  calls
assert!() .

When this happens, the kernel becomes unresponsive without prin�ng anything to the
console. If you find your kernel behave in this way, try to find a lock usage before MMU.
Note that kprintln!()  and logging macros use console lock internally.

 Send  and Sync  variance is hard

A trait implementa�on of a wrapper type some�mes depends on a trait implementa�on
of an inner type. This is called “variance”.

Containers like Vec<T>  implements Send  if T  is Send  and Sync  if T  is Sync . Mutex

implements Send  if T  is Send  and Sync  if T  is Send . The variance rule for Sync  and
Send  trait is tricky and hard to reason about. When you are in doubt, check the closest

type in Rust standard library and follow the design.

 Explain your mutex design (mutex-design)

https://doc.rust-lang.org/core/sync/atomic/struct.AtomicBool.html


Why did you choose such ordering requirement? Why does this design guarantee the
soundness? Explain with brevity.

 State transi�on of Mutex (mutex-bad-state)

What can go wrong if a thread calls lock(), ini�alize MMU, and unlock()? If you think this
should be prevented, describe why it can be a problem and how to prevent it. You may
add addi�onal checks in VMManager::wait() . If you think it is okay to allow such behavior,
jus�fy your thought. Either answer can be correct depends on how you implemented
mutex.

Subphase C: Multicore Scheduling

Right now, only core 0 is scheduling user programs. In this subphase, you will make other
cores par�cipate in scheduling. As a result, our kernel will have around four �mes more
throughput to run processes compared to the single-core version.

Per-Core IRQ Handling

In this sec�on, you’ll enable per-core IRQ handling. We have used �mer register at
IO_BASE + 0x3000 , but the interrupt from this �mer only propagates to core 0. In order to

make other cores par�cipate in scheduling, we’ll switch to another �mer interrupt named
CNTPNSIRQ , which stands for Counter Physical Non-Secure IRQ.

You’ll mainly work in pi/src/local_interrupt.rs . The overall structure is mostly similar to
pi/src/timer.rs  and pi/src/interrupt.rs . You will also read “AArch64 Programmer’s Guides:

Generic Timer” (�mer) and “Quad-A7 Control” (QA7) as references while working on per-core
IRQ handling. “AArch64 Programmer’s Guides: Generic Timer” describes how generic �mer
works in AArch64 architecture, and “Quad-A7 Control” describes how to propagate
interrupts from generic �mer to each core.

First, fill in the defini�on of Registers . See QA7 chapter 4 for register defini�on. You only
need to define registers up to “Core3 FIQ Source”. Then, fill the defini�on of LocalInterrupt

and implement From<usize>  for LocalInterrupt . See QA7: 4.10 for the defini�on.

Next, implement the following func�ons of LocalController :

enable_local_timer()

Enable CNTP �mer by se�ng appropriate bits to CNTP_CTL_EL0  register (ref: D7.5.10).
Now enable per-core CNTPNS IRQ by wri�ng values to Core X �mers interrupt
control register (QA7: 4.6). Use register defini�on in lib/aarch64/src/regs.rs  whenever
possible instead of wri�ng an inline assembly.



is_pending()

Read corresponding bits from Core X interrupt source register (QA7: 4.10) and convert
it to a boolean value.

tick_in()

Finally, implement tick_in()  method for generic �mer as we did in lab 4. See �mer:
3.1 to 3.3 to determine which register you should use. You’ll need to convert Duration

to counter �ck value using the frequency of the �mer. Again, prefer using register
defini�on in lib/aarch64/src/regs.rs  over wri�ng an inline assembly.

 How de we clear CNTPNS IRQ bit? (cntpns-clear)

When local �mer passes the specified �me, CNTPNS IRQ bit is set and the core will
receive an IRQ interrupt. When using the global �mer, we wrote to CS register to clear
the interrupt bit. Then, how do we clear CNTPNS IRQ bit?

Fixing the Scheduler

The next step is to use this per-core �mer interupt in the scheduler to enable mul�core
scheduling. Follow these instruc�ons step by step:

Make the scheduler use per-core local �mer interrupt

Open kern/src/scheduler.rs . You should have initialize_global_timer_interrupt()  in
GlobalScheduler::start()  if you followed the merge guideline at the beginning of the

lab. Add the core number check around initialize_global_timer_interrupt() , so that
only core 0 invokes that func�on. Then, call initialize_local_timer_interrupt()  in the
next line (for all cores).

Next, erase what you have in initialize_global_timer_interrupt  and implement the
same logic in initialize_local_timer_interrupt  with local interrupt controller. Leave the
content of initialize_global_timer_interrupt  empty for now, but do not erase the call
to this func�on in start() . We will use this func�on in the later part of the lab.

Support local �mer interrupt handling

Implement Index<LocalInterrupt>  for LocalIrq  in kern/src/traps/irq.rs . Then, add
local �mer interrupt handling logic in kern/src/traps.rs . Global interrupt should be
handled only by core 0, and all cores should handle their local interrupts.

Fix the scheduler logic for mul�core environment



Switching to mul�core environment breaks a few characteris�cs of the scheduler.

It is no more guaranteed that the first process in the queue matches the current
running process on the core. If your scheduler logic relies on this assump�on, fix
that now.
It is not guaranteed that the process found with switch_to()  call in start()  is in its
ini�al state. This can happen if the number of process is smaller than the number
of cores. In result, we can no longer assume that all registers are zero in the
process’s context, and it is invalid to overwrite any register used by the user
process a�er returning from context_restore .

There are many ways to fix this. One naive way is giving up the stack adjustment
and set SP  to the address of the copied trap frame in the kernel stack. This
solu�on wastes about 300 bytes plus the size of the trap frame. Another way to fix
it is to copy the content of tf  to the top of the kernel stack, and rewind SP  back
before calling context_restore . This involves more unsafe code, but it only wastes
the size of the trap frame. You can also save the value of general registers to the
memory a�er context_restore , use them as temporary regsiters and adjust SP ,
and restore them back before eret .
You may need to insert sev()  in schedule_out()  if you loop with wfe()  in
switch_to()  to no�fy other cores wai�ng.

Make other cores par�cipate in scheduling

The last step is to replace the infinite loop at the end of kmain2()  in kern/src/init.rs

with SCHEDULER::start() .

When you are finished, you should see that four cores are par�cipa�ng in scheduling. Print a
trace!()  log in local IRQ handling rou�ne and verify that all four cores are par�cipa�ng in

the scheduling. Recall that you need to run VERBOSE_BUILD=1 make  to enable trace-level log. If
everything works correctly, proceed to the next phase.

Mul�core performance experiment (mul�core-performance)

Populate 4 fib processes in the scheduler. Run them with and without mul�core, and
record the running �me. How much �me did it take on a single core, and how much �me
did it take on four cores? Was it exactly four �mes faster on four cores? If not, what will
be the overhead?

Phase 2: TCP Networking

In this phase, you’ll add TCP networking capability to our kernel by implemen�ng a network
driver and related system calls. In subphase A, you will learn how TCP over Ethernet works.
Then, in subphase B, You will integrate an exis�ng Ethernet implementa�on for RPi (USPi)
and a minimal TCP stack (smoltcp) to our kernel. In subphase C, you will adjust process and



scheduler so that sockets are properly managed as a process resource. Finally, in subphase D,
you will implement several socket related system calls to expose the network driver to a user
program.

Subphase A: Networking 101

In this subphase, you’ll learn the concepts of computer networking. We will cover the basics
of computer networking, network layer, how a packet routes through computer networks,
and socket abstrac�on provided by OS.

Network Layer Model

Networking is a way to communcate with other computers. There are many models that
describe the network structure, but the common concept among them is that they all model
network as a layered structure. In this lab, we will use TCP/IP’s 4 layer model. From the
lowest to the highest, 4 layers of TCP/IP model are:

Link Layer (Ethernet, IEEE 802.11)
Internet Layer (IP)
Transport Layer (TCP, UDP)
Applica�on Layer (FTP, HTTP, Plain Text)

The link layer provides a way to exchange packets in local (i.e., directly connected) network,
such as computers connected to the same switch. Ethernet and IEEE 802.11 (Wi-Fi) are two
popular link layer protocol. Typically, a Media Access Control (MAC) address is used as an
iden�fier for link layer protocols. TCP/IP is designed to be link-layer independent, and there
even exists a standard which uses homing birds as a link layer.

The internet layer defines an addressing system to iden�fy a host and how packets should be
routed to the des�na�on. Internet protocol version 4 (IPv4) is the most widely used address
system. Under IPv4 scheme, an endpoint is iden�fied by an address of four octets, which is
o�en denoted as four decimal numbers separated by dots, such as 127.0.0.1. Internet
protocol only provides best-effort delivery; it does not guarantee that a packet will actually
reach the des�na�on. This concern is handled at the transport layer level.

The transport layer provides an abstrac�on of data channels, so that mul�ple connec�ons
can be established between two host computers. The two most famous transport layer
protocols are Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). They use
ports, a 16-bit integer, as an endpoint iden�fier. TCP provides reliable connec�on between
two endpoints with packet delivery acknowledgement, retransmission for error recovery, and
conges�on control. On the other hand, UDP is a connec�onless and lossy protocol that is
much lighter and faster.

https://en.wikipedia.org/wiki/IP_over_Avian_Carriers
https://en.wikipedia.org/wiki/Best-effort_delivery


Finally, the applica�on layer serves various applica�on level protocols. For instance,
HyperText Transfer Protocol (HTTP) for web content, File Transfer Protocol (FTP) for file sharing,
or Transport Layer Security (TLS) for encrypted communca�ons. In our lab, we will send and
receive plain text messages over TCP/IP stack, using an Ethernet cable.

Packet Routing

A route table is a data table managed by an opera�ng system to determine which interface
and gateway should be used to reach an IP address. On Ubuntu 18.04, a route table can be
printed with route  command (if the command is not available, install net-tools  package by
running sudo apt install net-tools ).

An example route table looks like this:

Kernel IP routing table 
Destination     Gateway         Genmask         Flags Metric Ref    Use Iface 
default         192.168.0.1     0.0.0.0         UG    0      0        0 enp11s0f1 
192.168.0.0     0.0.0.0         255.255.255.0   U     0      0        0 enp11s0f1 
172.17.0.0      0.0.0.0         255.255.0.0     U     0      0        0 docker0 

An entry in a route table contains des�na�on, gateway, subnet mask (genmask), and interface
ID (Iface). Given an IP address, the opera�ng system compares it with each entry in the route
table to determine where that packet should be delivered (or forwarded). If the packet’s
target IP address masked by the subnet mask matches the des�na�on IP of an entry, that
packet goes through the specified interface. If the packet’s target IP does not match any
entry, it will be delivered to the default gateway, which is 192.168.0.1 in our example.

A pair of des�na�on address and a subnet mask is called Classless Internet-Domain Rou�ng
(CIDR) block. A subnet mask splits 32-bit address into two sec�ons, network address and
host address. The network address is a fixed part and represented as bit 1 in the subnet
mask, and the host address is a variable part and represented as bit 0 in the subnet mask. A
subnet mask always consists of n bits of 1 followed by 32-n bits of 0, and it is o�en
shorthanded as “/(# of 1 bit in the subnet mask” a�er the IP address. For instance,
des�na�on IP 192.168.0.0 with subnet mask 255.255.255.0 is wri�en as 192.168.0.0/24,
and des�na�on IP 172.17.0.0 with subnet mask 255.255.0.0 is wri�en as 172.17.0.0/16.

If an entry does not define a gateway, then a host with that IP can be found in the local
network connected through the interface. For instance, since 192.168.0.4 matches
192.168.0.0/24, a host with IP 192.168.0.4 can be found in the local network connected to
enp11s0f1 . If an entry defines a gateway, then a packet will be forwarded to that IP first in

order to reach the target address. For instance, a packet with target IP 1.1.1.1 will be first
forwarded to the default gateway 192.168.0.1 to reach the des�na�on. Then, a machine at
192.168.0.1 (a router) routes the packet to the next host according to its own rou�ng table.



When used with IPv4 and Ethernet, hardware address in ARP packet is MAC address and protocol
address in ARP packet is IPv4 address.

Recall that MAC address is used as an address scheme when delivering packets through
Ethernet link layer. Address Resolu�on Protocol (ARP) is used to discover the associa�on of the
IPv4 address and the MAC address of local neighbors. ARP packet consists of IP and MAC
address pair, and each computer in the local network saves (IP, MAC) pair in its neighbor
cache for future use.

Socket

Just like MAC is a link layer address and IP is a internet layer address, a port can be thought
as an address for transport layer. An IP address is used to select a computer, and a port is
used to select specific process running on that computer. Combined, a pair of IP address and
a port forms a transport layer endpoint. Transport layer protocols such as TCP and UDP
connects two different endpoints.

https://en.wikipedia.org/wiki/Address_Resolution_Protocol


A diagram of network layer hierarchy from “TCP/IP Illustrated, Vol. 1: The Protocols”

Most of user applica�ons work at the applica�on layer level. They need to select an endpoint
to connect (or listen on) and transla�on layer protocol (TCP/UDP) to use when ini�alizing the
connec�on, but a�er that, they only send and receive applica�on data. The opera�ng system
and the network driver take cares of how to deliver an actual packet generated from user
programs, and during the process, they wrap and unwrap a packet with various protocol
headers.

Therefore, an opera�ng system needs to manage the list of ac�ve connec�ons and remember
which process is using which connec�ons. A socket is a system resource that abstracts this
behavior. User programs open, interact with, and close sockets with system calls; They use a
socket descriptor, a handle for a socket, to address a specific socket.

Unix opera�ng system uses Berkeley Socket API. A few important socket APIs of Berkeley
Socket APIs are as follows. These are descrip�ons of each API from Wikipedia:

socket()  creates a new socket of a certain type, iden�fied by an integer number, and
allocates system resources to it.
bind()  is typically used on the server side, and associates a socket with a socket address

structure, i.e. a specified local IP address and a port number.
listen()  is used on the server side, and causes a bound TCP socket to enter listening

state.
connect()  is used on the client side, and assigns a free local port number to a socket. In

case of a TCP socket, it causes an a�empt to establish a new TCP connec�on.
accept()  is used on the server side. It accepts a received incoming a�empt to create a

new TCP connec�on from the remote client, and creates a new socket associated with
the socket address pair of this connec�on.
send() , recv() , sendto() , and recvfrom()  are used for sending and receiving data.

https://en.wikipedia.org/wiki/Berkeley_sockets


close()  causes the system to release resources allocated to a socket. In case of TCP, the
connec�on is terminated.

In our lab, we will use a TCP/IP stack wri�en in Rust named smoltcp. Since smoltcp ’s API set
provides a li�le different func�onality compared to Berkeley Socket API, we will just use
smoltcp ’s API. These are notable differences compared to Berkeley Socket API:

Instead of bind(Local Addr)  and listen() , it uses single listen(Local Addr)  syscall.
Instead of using a blocking syscall accept()  which waits for a new connec�on and creates
a new socket, a server socket will automa�cally get connected when Ethernet device is
polled. To accept a new connec�on, a new socket need to be created.
send()  and recv()  are non-blocking by default. send()  will queue the message to

socket’s buffer and return immediately, and recv()  will return immediately even if there’s
no message.

Subphase B: Network Driver

In this subphase, you’ll add a network driver to our kernel. TCP/IP specifica�on is such a
complex and huge protocol with numerous extensions, so instead of wri�ng the network
stack from scratch, we are going to use exis�ng implementa�ons and focus on their
integra�on to OS. Namely, we will use USPi as an Ethernet driver and smoltcp as a network
stack.

Integrating USPi

USPi is a bare metal USB driver for Raspberry Pi wri�en in C. We are using it to communicate
with Raspberry Pi’s Ethernet contoller through USB protocol. USPi consists of two parts, env

and lib . lib  is the main part of the library, and it expects a few API from the environment,
such as memory alloca�on, �mer, interrpt handling, and logging. env  is a minimal kernel that
exposes these func�ons, but instead of using env , we are going to replace it with our
RustOS kernel.

kern/src/net/uspi.rs  is responsible for the integra�on of USPi and RustOS. Func�ons inside
extern "C"  block are exposed from USPi to Rust, and func�ons with #[no_mangle]  annota�on

are exposed from Rust to USPi. Most of the provided func�ons are self-explanatory. Go
ahead and read the file now. The code structure follows the usual design; USPi  struct
implements non-thread safe version to interact with USPi and Usb  struct wraps USPi  under
a Mutex so that it can be accessed by mul�ple cores at the same �me.

Two things noteworthy in this module are uspi_trace!()  macro and start_kernel_timer() .
Recall that VERBOSE_BUILD  environment variable controls whether trace-level logs are printed
or not. uspi_trace!()  wraps trace!()  macro and provides another knob to control, namely
DEBUG_USPI . Set it to true when you are working on USPi related func�ons and turn it off

when you are done. start_kernel_timer()  uses USPi’s TimerStartKernelTimer()  to register

https://github.com/smoltcp-rs/smoltcp
https://github.com/rsta2/uspi


�mer callback func�ons. The logic is very similar to the �mer IRQ handling of our kernel, but
it implements so�ware �mer so that mul�ple callback func�ons with different delays can be
registered under the same interrupt.

USB and Timer3 interrupts need to be handled in the kernel to support USPi. Moreover, USB
interrupt needs to be handled in the kernel context. Which means, our kernel needs nested
handling of USB interrupt. Instead of allowing general nested interrupt handling, we are going
to handle USB interrupt as FIQ and allow nested FIQ interrupt in a few limited code places.

Network Driver

We will use smoltcp, a minimal TCP/IP stack for bare-metal systems wri�en in Rust, as a
network stack for our kernel. Three important traits / structs in smoltcp are SocketSet,
Device, and EthernetInterface.

1. SocketSet  manages a set of sockets. Each socket in a socket set manages its own Rx and
Tx buffer, and wri�ng to and reading from a socket only accesses these buffers.

2. A type that implements Device  trait represents a physical hardware device that is capable
of send and receive a raw network packet. In our case, USPi library will be used to send
and receive raw physical packets.

3. EthernetInterface  internally manages Device  and uses it to send and receive packets.
EthernetInterface  can be ``poll()``ed with a socket set. When polled, pending data in Tx

buffer of sockets will be sent and received data will be buffered to Rx buffer of sockets.

kern/src/net.rs  integrates smoltcp library with our kernel design. Read the code of following
structs to understand how this integra�on is done:

FrameBuf  and Frame :

Fixed size, 8-byte aligned, and length trackable u8  buffer.

EthernetDriver  and GlobalEthernetDriver :

A thread-unsafe Ethernet driver struct and its corresponding struct wrapped in a mutex.

UsbEthernet , RxToken , and TxToken :

UsbEthernet  implements smoltcp::phy::Device  trait, which is an interface for sending and
receiving raw network frames. RxToken  and TxToken  structs implement
smoltcp::phy::RxToken  and smoltcp::phy::TxToken , which are traits that define how a single

network packet should be sent and received.

When administra�ng a network stack, an important role of an opera�ng system is managing
port numbers on the system. Typically, an opera�ng system tracks which processes are using
which port numbers and prevents other processes to interfere with the connec�on. To
support this behavior, you need to implement port management func�ons in kern/src/net.rs

and use them properly in the process and scheduler code.

https://github.com/smoltcp-rs/smoltcp
https://docs.rs/smoltcp/0.6.0/smoltcp/socket/struct.SocketSet.html
https://docs.rs/smoltcp/0.6.0/smoltcp/phy/trait.Device.html
https://docs.rs/smoltcp/0.6.0/smoltcp/iface/struct.EthernetInterface.html


Implementation

You’re now ready to implement a network driver to our kernel. We recommend you to
implement features in the following order:

1. Finish USPi environment integra�on in kern/src/net/uspi.rs

First, implement logging func�ons, DoLogWrite()  and uspi_assertion_failed() . When
implemen�ng DoLogWrite() , ignore _pSource  and _Severity , translate pMessage  as
null-terminated C-style string, and print it with uspi_trace!()  macro. When
implemen�ng uspi_assertion_failed() , convert pExpr  and pFile  to Rust string
similarly and print them with line number nLine . Both func�ons should not panic.

Then, implement four �mer func�ons, TimerSimpleMsDelay() , TimerSimpleusDelay() ,
MsDelay() , and usDelay() . Convert milliseconds and microseconds provided as a

parameter to Rust’s Duration  and use pi::timer::spin_sleep() .

Finally, implement malloc()  and free() . These are C-style alloca�on API, which
means that they do not provide layout parameter like Rust alloca�on API. Carefully
read the defini�on of malloc()  and free()  and think about what informa�on need to
be tracked in addi�on to what has been provided as their parameters. Allocate
addi�onal space in a chunk to save those informa�on. Make sure all allocated pointers
are 16-byte aligned.

2. Enable FIQ interrupt handling



USPi requires handling of USB and Timer3 interrupts. Moreover, it requires to handle
USB interrupt in the kernel context. We are going to handle USB interrupt as FIQ
interrupt instead of normal IRQ interrupt and allow nested FIQ interrupt handling in
small number of places to support this behavior.

Start by implemen�ng enable_fiq()  in pi/src/interrupt.rs . You’ll need to revisit
chapter 7 of the BCM2837 ARM Peripherals Manual to see how an interupt can be
selected as a FIQ interrupt. Then, add FIQ handling rou�ne to handle_exception()  in
kern/src/traps.rs  and implement Index<()>  for Fiq  in kern/src/traps/irq.rs .

 Hint

You may want to check FIQ control register when wri�ng enable_fiq() .

Once you are finished, complete ConnectInterrupt()  func�on in kern/src/net/uspi.rs .
First, assert that nIRQ  is one of Interrupt::Usb  or Interrupt::Timer3 . Then, if the
request is for USB interrupt, enable FIQ handling of USB interrupt and register a
handler that invokes provided pHandler  to the FIQ handler registry ( crate::FIQ ).
Otherwise, enable IRQ handling of Timer3 interrupt and register a handler that
invokes provided pHandler  to the global IRQ handler registry ( crate::GLOBAL_IRQ ).

Recall that all excep�on flags are masked by default when an excep�on handler is
called. To handle FIQ interrupt, F flag of PSTATE register should be unmasked.
enable_fiq_interrupt()  and disable_fiq_interrupt()  in aarch64  library give an ability to

temporarily enable FIQ interrupt. Enable FIQ handling in following places with these
func�ons:

1. When handling system calls ( kern/src/traps.rs )
2. When handling IRQ interrupts ( kern/src/traps.rs )
3. While wai�ng on the very first switch_to  call in start()

( kern/src/process/scheduler.rs )

3. Implement Ethernet ini�aliza�on

https://tc.gts3.org/cs3210/2020/spring/r/BCM2837-ARM-Peripherals.pdf


Finish create_interface()  in kern/src/net.rs . You should use smoltcp’s
EthernetInterfaceBuilder. When crea�ng the interface, use UsbEthernet  as an inner
physical device and MAC address obtained from USPi as Ethernet address of the
interface. Then, add an empty neighbor cache using BTreeMap . Finally, add two CIDR
blocks as its IP addresses: 169.254.32.10/16 and 127.0.0.1/8. When you are done,
implement EthernetDriver::new()  using create_interface() .

 Link-local Address

169.254.0.0/16 is a reserved address space for local communica�on. If two
computers are directly connected with an Ethernet cable, two different link-local
addresses will be assigned to each of them. In our case, we are assigning a fixed
link-local address of 169.254.32.10 to the kernel’s network interface.

 How to setup with router

If you have a router, you can connect RPi to the router instead of connec�ng it
directly to the computer.

1. Record the MAC address of your RPi board.
2. In router management page (check your router manual to learn how to access

it), manually assign an IP to the MAC address of your RPi.
3. In the network driver, manually assign the IP you chose.

The IP address range managed by your router should be in one of these three
private network address range.

192.168.0.0 - 192.168.255.255
172.16.0.0 - 172.31.255.255
10.0.0.0 - 10.255.255.255

The next step is to ini�alize USB and ETHERNET in kmain() . Write the following
ini�aliza�on rou�ne a�er the scheduler ini�aliza�on:

1. Enable FIQ interrupt
2. Ini�alize USB

3. Ini�alize ETHERNET

4. Assert if the Ethernet is available with is_eth_available()

5. Poll the Ethernet with is_eth_link_up()  and loop un�l it returns true
6. Disable FIQ interrupt

4. Implement port management APIs

https://docs.rs/smoltcp/0.6.0/smoltcp/iface/struct.EthernetInterfaceBuilder.html


Next, write port management APIs in EthernetDriver . There are 65535 ports in our
kernel, from 1 to 65535. We will manage port availability with port_map  field of
EthernetDriver , which is an arrray of u64 . One u64  integer variable has 64 bits, and

you’ll use each bit in as an indicator of whether a port is available or not.

 Port permission

A port number under 1024 are reserved in Linux opera�ng system, and you need
root permission to listen on those ports. Since we don’t have “user” concept in
RustOS, we will not enforce this limita�on.

Now write mark_port() , erase_port() , and get_ephemeral_port()  in kern/src/net.rs .
See the comments of the func�ons and follow the instruc�on.

5. Implement Ethernet polling

The next step is to implement Ethernet interface polling. When Ethernet interface is
polled with a SocketSet , it should send pending Tx packets in the socket buffer and
queue pending Rx packets in the Ethernet to corresponding socket buffer.

smoltcp  already implements this logic. Use them to implement EthernetDriver::poll()

and EthernetDriver::poll_delay()  in kern/src/net.rs . You may want to check
EthernetInterface documenta�on. You also need to implement
GlobalEthernetDriver::poll() , which is a wrapper func�on to EthernetDriver:poll() .
GlobalEthernetDriver::poll()  should be only executed by core 0 in Timer3 handling

context. Check these assump�ons in addi�on to the usual wrapper func�on
seman�cs.

 Hint

When implemen�ng the check in GlobalEthernetDriver::poll() , you will need to
check the core affinity and the preemp�ve counter.

6. Register Ethernet polling callback

Ethernet driver should be polled regularly to provide con�nuous network connec�vity.
Since we have already dedicated Timer1 interrupt to the scheduler �ck, we are going
to use Usb::start_kernel_timer()  for Ethernet polling.

First, implement poll_ethernet()  func�on in kern/src/process/scheduler.rs . Poll the
Ethernet interface with GlobalEthernetDriver::poll() , calculate the next poll �me with
poll_delay() , and register the �meout with Usb::start_kernel_timer() . Once you are

finished, register the first �meout in initialize_global_timer_interrupt()  with
Usb::start_kernel_timer() .

https://docs.rs/smoltcp/0.6.0/smoltcp/iface/struct.EthernetInterface.html


When you are done, make sure that USPi and Ethernet ini�aliza�on in kmain()  works
correctly, Ethernet interface is polled repe��vely, and exis�ng user programs s�ll work. If
everything works as expected, con�nue to the next subphase.

Subphase C: Process Resource Management

In this subphase, you’ll add process resource management to our kernel. An opera�ng system
kernel needs to track which sockets and files are used by which processes, so that they can
be opened, updated, and closed according to processes’s requests and their life�me. In Unix
opera�ng systems, actual sockets or files (inode) implementa�on reside in the kernel, and
they are exposed to user programs as a descriptor. The process makes a syscall using a
descriptor, which is an index to the list of resources used by the current process. For instance,
if a process opens a file with open()  syscall, it returns “3” and the process uses “3” to refer
that file henceforth. (0, 1, 2 are reserved for standard I/O). We will follow this design when
implemen�ng process resource management code.

 Socket descriptor design (descriptor-design)

What will be the benefit and the cost of using the index as a descriptor? What will be
be�er or worse if a random token is used instead of an index?

Implementation

Start with adding sockets  field of type Vec<SocketHandle>  to Process  struct in
kern/src/process/process.rs . Fix new()  appropriately. Then, implement
Scheduler::release_process_resources()  in kern/src/process/scheduler.rs . Iterate through all

sockets held by the current process, close all local ports a�ached to them, release the socket
handle, and prune the Ethernet socket set. Don’t forget to call
Scheduler::release_process_resources()  in Scheduler::kill() .

 Hint

Use mem::replace  to swap out process.sockets .

 There are two handles in our network stack

smoltcp uses SocketHandle  to refer a socket in SocketSet . Our kernel uses a socket
descriptor to refer a SocketHandle  held by a process. Be careful not to confuse these two
handles.

Subphase D: Socket System Calls



In this subphase, you will add a number of system calls to our kernel to allow user programs
to use the network func�onality. You’ll implement total 6 socket syscalls. Here is a short
summary of them:

sock_create() : creates a new socket and registers it as current process’s resource
sock_status() : checks the status of the socket
sock_connect() : connects to a remote endpoint with the socket
sock_listen() : listens on a local endpoint with the socket
sock_send() : sends a packet with a connected socket
sock_recv() : receives a packet from a connected socket

Implementation

Start wri�ng socket related system call handlers in kern/src/traps/syscall.rs . Refer to the
comments to understand what those func�ons do. Except create() , they will have the
similar code structure:

1. Find a socket handle held by the current process
2. Find a socket from Ethernet socket set using the handle
3. Perform an opera�on with socket (such as status() , connect() , etc.)
4. Update the scheduler and Ethernet driver accordingly; For example, you should mark the

local port number as used when listen()  or connect() .
5. Convert the result according to the system call seman�cs.

You will need to revisit scheduler and Ethernet driver code to find necessary APIs for this
subphase. Also consult TcpSocket page from smoltcp document to find useful func�ons.

 User address valida�on

When reading from or wri�ng to an address from users, you must ensure that the
contents are really inside the user address space. Passing a kernel address through
syscalls and trick the kernel to overwrite the kernel memory is a classic a�ack against
opera�ng system kernels.

 There is no close()  syscall

We did not include close()  syscall as a requirement, but feel free to implement it if you
want to.

 smoltcp socket APIs are non-blocking

Unlike Berkeley socket API, our socket system calls are non-blocking by default. This is
because we are directly wrapping smoltcp APIs as a syscall. In result, instead of ge�ng
no�fied by the kernel when a new connec�on is established, user programs need to check

https://docs.rs/smoltcp/0.6.0/smoltcp/socket/struct.TcpSocket.html


the socket status in a loop to see if a connec�on has been established.

 Implement Berkeley-like socket APIs (berkeley-socket)

How can you implement Berkeley-like socket APIs in our kernel design? For instance, let’s
say a user program invokes sock_listen()  syscall. How can the kernel suspend a user
program un�l a new connec�on is established?

When you finish implemen�ng socket related system call handlers in the kernel, write their
corresponding user-side system calls in kernel_api/src/syscalls.rs . When implemen�ng
them, check the comments in their kernel side handlers for syscall argument and return value
specifica�on. Convert wrapper types (e.g., SocketDescriptor , IpAddr , etc.) to u64  and back
while implemen�ng them, so that user programs can invoke system calls with more natural
types.

Phase 3: Echo Server

The last phase of our long journey is to implement a simple user program that tests the
network stack. In this phase, you’ll write an echo server, a server that sends back any
message that it reads from the client. It is one of the simplest network applica�on. You will
mainly work in user/echo/src/main.rs .

Implementation

We have provided a very basic error handling code in main() . Your role is to implement an
echo server in main_inner() .

1. First, create a socket with sock_create() .
2. Then make that socket listen on port number 80.
3. Loop un�l a packet can be sent with the socket. You need to check can_send  field in the

socket status. Print a message in the loop and sleep for a short period of �me (say, 1 sec).
4. Send a welcome message to the client.
5. Inside another loop, receive a packet and send it back through the socket. Also print the

message to the console with print!() .

When you are done implemen�ng the echo server, add “/echo” to the scheduler ini�aliza�on
code.

How to Test

Run make  in user/echo  to build the program and copy user/echo/build/echo.bin  to the SD
card. Then, make transmit  your kernel (in kern  directory). There are two connec�ons to the
kernel now: a serial connec�on and the Ethernet connec�on. If you screen  to the serial



connec�on a�er transmi�ng the kernel image, you should see repeated messages which say
that the server is wai�ng for a client connec�on. The next step is to connect to the echo
server with netcat ( nc ) command.

 Don’t forget to copy your user program to the SD card

make transmit  only transmits the kernel image. Don’t forget to copy the user programs to
the SD card to make your kernel detect them!

If you are using a VM, we recommend you to make transmit  in VM but using netcat on your
host opera�ng system. Using a link local address is a bit uncommon way to communicate
these days, and since the link-local address space is meant to be used only in local setups,
there is a possibility that the network transla�on layer of a virtual machine doesn’t work well
with it.

You may need to install netcat command to your host system. On Windows, netcat seems to
work well. On Linux, you might need to configure your ethernet interface to be
Link-Local Only  in the Network Manager or using ifconfig . Netcat will mostly be pre-

installed. If not, you can use sudo apt-get install netcat . On MacOS, you can install netcat
with brew install nmap  command. If your RPi server wakes up, you can see the light for
USB 10/100/1000 LAN  (or something similar name) turns to yellow from red in
System Preferences  - Network  with its IP address.

If everything is ready, type nc 169.254.32.10 80  (or ncat  on MacOS) on your computer to
connect to the echo server. It would take a while for RPi to be recognized by the opera�ng
system, so the first few tries might fail. When connected, the echo server will print a
welcome message, and anything you type into the shell will go through the Ethernet cable
and come back in a while.

https://eternallybored.org/misc/netcat/


Submission

Once you’ve completed the tasks above, you’re done and ready to submit! Congratula�ons!

You can call make check  in tut/5-multicore  directory to check if you’ve answered every
ques�on.



Once you’ve completed the tasks above, you’re done and ready to submit! Ensure you’ve
commi�ed your changes. Any uncommi�ed changes will not be visible to us, thus
unconsidered for grading.

When you’re ready, push a commit to your GitHub repository with a tag named lab5-done .

# submit lab5 
$ git tag lab5-done 
$ git push --tags 


