
 » Lab » Lab 4: Preemp�ve Mul�tasking

Lab 4: Preemptive Multitasking

Handed out: Tuesday, March 3, 2020
Due: Monday, April 13, 2020

Introduction

In this assignment, you will enable user-level applica�ons by implemen�ng processes and
related infrastructure. You will write privilege level switching code, context-switching code, a
simple round-robin scheduler, system call handlers, and a virtual memory subsystem. You will
also write several user programs and load them to start new processes.

Phase 0: Getting Started

Fetch the update for lab 4 from our git repository to your development machine.

$ git fetch skeleton
$ git merge skeleton/lab4

This is the directory structure of our repository. The directories you will be working on this
assignment are marked with *.

https://tc.gts3.org/cs3210/2020/spring/index.html
https://tc.gts3.org/cs3210/2020/spring/lab.html

.
├── bin : common binaries/utilities
├── doc : reference documents
├── ext : external files (e.g., resources for testing)
├── tut : tutorial/practices
│ ├── 0-rustlings
│ ├── 1-blinky
│ ├── 2-shell
│ ├── 3-fs
│ └── 4-spawn : questions for lab4 *
├── boot : bootloader
├── kern : the main os kernel *
├── lib : required libraries
│ ├── aarch *
│ ├── kernel_api *
│ ├── fat32
│ ├── pi
│ ├── shim
│ ├── stack-vec
│ ├── ttywrite
│ ├── volatile
│ └── xmodem
└── user : user level program *
 ├── fib *
 └── sleep *

You may need to resolve conflicts before con�nuing. For example, if you see a message that
looks like:

Auto-merging kern/src/main.rs
CONFLICT (content): Merge conflict in kern/src/main.rs
Automatic merge failed; fix conflicts and then commit the result.

You will need to manually modify the main.rs file to resolve the conflict. Ensure you keep all
of your changes from lab 3. Once all conflicts are resolved, add the resolved files with
git add and commit. For more informa�on on resolving merge conflicts, see this tutorial on

githowto.com.

ARM Documentation

Throughout this assignment, we will be referring to three official ARM documents. They are:

ARMv8 Reference Manual

This is the official reference manual for the ARMv8 architecture. This is a wholis�c
manual covering the en�re architecture in a general manner. For the specific
implementa�on of the architecture for the Raspberry Pi 3, see the ARM Cortex-A53
Manual. We will be referring to sec�ons from this manual with notes of the form (ref:
C5.2) which indicates that you should refer to sec�on C5.2 of the ARMv8 Reference
Manual.

https://githowto.com/resolving_conflicts
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf

ARM Cortex-A53 Manual

Manual for the specific implementa�on of the ARMv8 (v8.0-A) architecture as used by
the Raspberry Pi 3. We will be referring to sec�ons from this manual with notes of the
form (A53: 4.3.30) which indicates that you should refer to sec�on 4.3.30 of the ARM
Cortex-A53 Manual.

ARMv8-A Programmer Guide

A high-level guide on how to program an ARMv8-A process. We will be referring to
sec�ons from this manual with notes of the form (guide: 10.1) which indicates that
you should refer to sec�on 10.1 of the ARMv8-A Programmer Guide.

You can find all those three documents under doc/ subdirectory of our lab repo. We
recommend that you download these three documents now and maintain them within easy
reach.

Phase 1: ARM and a Leg

In this phase, you will learn about the ARMv8 architecture, switch to a lower privilege level,
install excep�on vectors, enable �mer interrupts, and handle breakpoint excep�ons by
star�ng a debug shell. You will learn about excep�on levels in the ARM architecture and how
the architecture handles excep�ons, interrupts, and privilege levels.

Subphase A: ARMv8 Overview

In this subphase, you will learn about the ARMv8 architecture. You will not be wri�ng any
code, but you will be answering several ques�ons about the architecture.

The ARM (Acorn RISC Machine) CPU architecture has a history spanning over 30 years.
There are eight major revisions, the latest being ARMv8-A, introduced in 2011. The
Broadcom BCM2837 SOC contains an ARM Cortex-A53, an ARMv8.0-A based CPU. The
Cortex-A53 (and other specific CPUs) are referred to as implementa�ons of the architecture.
This is the CPU you have been programming in the last three assignments.

 ARM CPUs dominate the mobile market.

ARM CPUs dominate the mobile market, appearing in over 95% of all smartphones sold
worldwide and almost 100% of all flagship smartphones including Apple’s iPhone and
Google’s Pixel.

Thus far, we’ve avoided the details of the underlying architecture, allowing the Rust compiler
to handle them for us. To enable running processes in user-space, however, we’ll need to
program the CPU directly at the lowest of levels. Programming the CPU directly requires

https://tc.gts3.org/cs3210/2020/spring/r/ARM-Cortex-A53-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARM-Cortex-A53-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARM-Cortex-A53-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf

familiariza�on with the CPUs na�ve assembly language and overall concepts. We’ll start with
an overview of the architecture and then proceed to describe a few key assembly
instruc�ons.

Registers

The ARMv8 architecture includes the following registers (ref: B1.2.1):

r0 … r30 - 64-bit general purpose registers

These registers are accessed via aliases. The registers x0 … x30 alias all 64-bits of
these registers. The registers w0 … w30 alias the least-significant 32-bits of these
registers.

lr - 64-bit link register; aliases x30

Used to store the link address. The bl <addr> instruc�on stores the address of the
next instruc�on in lr and branches to addr . The ret instruc�on sets the PC to
the address in lr .

sp - a dedicated stack pointer

The lower 32 bits of the stack-pointer can be accessed via wsp . The stack pointer
must always be 16-byte aligned.

pc - the program counter

This register can be read but not wri�en. The pc is updated on branching
instruc�ons and excep�on entry/return.

v0 … v31 - 128-bit SIMD and FP point registers

These registers are used for vectorizing SIMD instruc�on and floa�ng point
opera�ons. These registers are accessed via aliases. The registers q0 … q31 alias all
128-bits of these registers. The registers d0 … d31 alias the lower 64-bits of these
registers. There are also alias for the lower 32, 16, and 8 bits of these registers
prefixed with s , h , and b , respec�vely.

xzr - read-only zero register

This pseudo-register, which may or may not be a hardware register, always holds
the value 0 .

There are also many special-purpose registers. We’ll describe these as needed, as in the next
sec�on.

PSTATE

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf

At any point in �me, an ARMv8 CPU captures the program state in a pseudo-register named
PSTATE (ref: D1.7). PSTATE isn’t a real register; there’s no way to read or write it directly.
Instead, there are special purpose registers that can be used to read or write the various
fields of the PSTATE pseudo-register. On ARMv8.0, these are:

NZCV - condi�on flags
DAIF - excep�on mask bits, used to prevent excep�ons from being issued
CurrentEL - the current excep�on level (explained later)
SPSel - stack pointer selector

These registers belong to the class of registers known as system registers or special registers
(ref: C5.2). Typically, registers can be loaded into from memory (wri�en) using the ldr

instruc�on and stored in memory (read) using the str instruc�on. System registers cannot
be read/wri�en with these instruc�ons. Instead, the special purpose instruc�ons mrs and
msr must be used (ref: C6.2.162 - C6.2.164). For example to read NZCV into x1 , you can

issue the instruc�on:

mrs x1, NZCV

Execution State

At any point in �me, an ARMv8 CPU is execu�ng in a given execu�on state. There are two
such execu�on states: AArch32, corresponding to 32-bit ARMv7 compa�bility mode, and
AArch64, 64-bit ARMv8 mode (guide: 3.1). We’ll always be execu�ng in AArch64.

Secure Mode

At any point in �me, an ARMv8 CPU is execu�ng in a given security state, otherwise known
as a security mode or security world. There are two security states: secure, and non-secure, also
known as normal. We’ll always be execu�ng in non-secure (normal) mode.

Exception Levels

At any point in �me, an ARMv8 CPU is execu�ng at a given excep�on level (guide: 3). Each
excep�on level corresponds to a privilege level: the higher the excep�on level, the greater the
privileges programs running at that level have. There are 4 excep�on levels:

EL0 (user) - Typically used to run untrusted user applica�ons.
EL1 (kernel) - Typically used to run privileged opera�ng system kernels.
EL2 (hypervisor) - Typically used to run virtual machine hypervisors.
EL3 (monitor) - Typically used to run low-level firmware.

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf

The Raspberry Pi’s CPU boots into EL3. At that point, the firmware provided by the
Raspberry Pi founda�on runs, switches to EL2, and runs our kernel8.img file. Thus, our kernel
starts execu�ng in EL2. Later, you’ll switch from EL2 to EL1 so that our kernel is running in
the appropriate excep�on level.

ELx Registers

Several system registers such as ELR , SPSR , and SP are duplicated for each excep�on level.
The register names are suffixed with _ELn to indicate the register for excep�on level n . For
instance, ELR_EL1 is the excep�on link register for EL1, while ELR_EL2 is the excep�on link
register for EL2.

We use the suffix x , such as in ELR_ELx , when we refer to a register from the target
excep�on level x . The target excep�on level is the excep�on level the CPU will switch to, if
necessary, to run the excep�on vector. We use the suffix s , such as in SP_ELs , when we
refer to a register in the source excep�on level s . The source excep�on level is the excep�on
level in which the CPU was execu�ng when the excep�on occurred.

Switching Exception Levels

There is exactly one mechanism to increase the excep�on level and exactly one mechanism
to decrease the excep�on level.

To switch from a higher level to a lower level (a privilege decrease), the running program must
return from the excep�on level using the eret instruc�on (ref: D1.11). On execu�ng an
eret instruc�on when the current excep�on level is ELx , the CPU:

Sets the PC to the value in ELR_ELx , a special purpose system-register.
Sets the PSTATE to the values in SPSR_ELx , a special purpose system-register.

The SPSR_ELx register (ref: C5.2.18) also contains the excep�on level to return to. Note that
changing excep�on levels also has the following implica�ons:

On return to ELs , the sp is set to SP_ELs if SPSR_ELx[0] == 1 or SP_EL0 if
SPSR_ELx[0] == 0 .

Switching from a lower level to a higher level only occurs as a result of an excep�on (guide:
10). Unless otherwise configured, the CPU will trap excep�ons to the next excep�on level.
For instance, if an interrupt is received while running in EL0, the CPU will switch to EL1 to
handle the excep�on. When a switch to ELx occurs, the CPU will:

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf

Mask all excep�ons and interrupts by se�ng PSTATE.DAIF = 0b1111 .
Save PSTATE and other fields to SPSR_ELx .
Save the preferred excep�on link address to ELR_ELx (ref: D1.10.1).
Set sp to SP_ELx if SPSel was set to 1 .
Save the excep�on syndrome (described later) to ESR_ELx (ref: D1.10.4).
Set pc to address corresponding to the excep�on vector (described later).

Note that the excep�on syndrome register is only valid when the excep�on was synchronous
(described next). All general purpose and SIMD/FP registers will maintain the value they had
when the excep�on occurred.

Exception Vectors

When an excep�on occurs, the CPU jumps to the excep�on vector for that excep�on (ref:
D1.10.2). There are 4 types of excep�ons each with 4 possible excep�on sources for a total
of 16 excep�on vectors. The four types of excep�ons are:

Synchronous - an excep�on resul�ng from an instruc�on like svc or brk

IRQ - an asynchronous interrupt request from an external source
FIQ - an asynchronous fast interrupt request from an external source
SError - a “system error” interrupt

The four sources are:

Same excep�on level when source SP = SP_EL0

Same excep�on level when source SP = SP_ELx

Lower excep�on level running on AArch64
Lower excep�on level running on AArch32

As described in (guide: 10.4):

When an excep�on occurs, the processor must execute handler code which corresponds
to the excep�on. The loca�on in memory where [an excep�on] handler is stored is called
the excep�on vector. In the ARM architecture, excep�on vectors are stored in a table,
called the excep�on vector table. Each excep�on level has its own vector table, that is,
there is one for each of EL3, EL2 and EL1. The table contains instruc�ons to be executed,
rather than a set of addresses [as in x86]. Each entry in the vector table is 16 instruc�ons
long. Vectors for individual excep�ons are located at fixed offsets from the beginning of
the table. The virtual address of each table base is set by the [special-purpose] Vector
Based Address Registers VBAR_EL3 , VBAR_EL2 and VBAR_EL1 .

The vectors are physically laid out as follows:

Target and source at same excep�on level with source SP = SP_EL0 :

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf

VBAR_ELx Offset Excep�on

0x000 Synchronous excep�on

0x080 IRQ

0x100 FIQ

0x180 SError

Target and source at same excep�on level with source SP = SP_ELx :

VBAR_ELx Offset Excep�on

0x200 Synchronous excep�on

0x280 IRQ

0x300 FIQ

0x380 SError

Source is at lower excep�on level running on AArch64

VBAR_ELx Offset Excep�on

0x400 Synchronous excep�on

0x480 IRQ

0x500 FIQ

0x580 SError

Source is at lower excep�on level running on AArch32

VBAR_ELx Offset Excep�on

0x600 Synchronous excep�on

0x680 IRQ

0x700 FIQ

0x780 SError

The vector table is con�guous.

Interface with Rust

We’ve provided aarch64 library (lib/aarch64) to provide Rusty interface in order to access
low-level details about the system. Before moving to next subphase, please compare your
understanding with registers defined in regs.rs . The other files in the library will be revisited
at the end of the next subphase.

Recap

For now, this is all of the ARMv8 architecture that you need to know. Before con�nuing,
answer the following ques�ons:

Which registers alias x30 ? (arm-x30)

If a value of 0xFFFF is wri�en to x30 , which two other registers names can be used to
retrieve that value?

 How would you set the PC to a specific address? (arm-pc)

How would you set the PC to the address A using the ret instruc�on? How would you
set the PC to the address A using the eret instruc�on? Be specific about which
registers you would set to which values.

 How would you determine the current excep�on level? (arm-el)

Which instruc�ons, exactly, would you run to determine the current excep�on level?

 How would you change the stack pointer on excep�on return? (arm-sp-el)

The stack pointer of a running program is A when an excep�on occurs. A�er handling
the excep�on, you’d like to return back to where the program was execu�ng but want to
change its stack pointer to B . How would you do so?

Which vector is used for system calls from a lower EL? (arm-svc)

A process is running in EL0 when it issues an svc instruc�on. To which address, exactly,
does the CPU jump to?

Which vector is used for interrupts from a lower EL? (arm-int)

A process is running in EL0 when a �mer interrupt occurs. To which address, exactly,
does the CPU jump to?

 How do you unmask IRQ excep�ons? (arm-mask)

Which values would you write to which register to unmask IRQ interrupts only?

 How would you eret into an AArch32 execu�on state? (arm-aarch32)

An excep�on has occurred with the source running in the AArch64 state. The target is
also running in AArch64. Which values in which registers would you change so that on
return from the excep�on via eret , the CPU switches to the AArch32 execu�on state?

 Hint

See (guide: 10.1).

Subphase B: Instructions

In this subphase, you will learn about the ARMv8 instruc�on set. You will not be wri�ng any
code, but you will be answering several ques�ons about the instruc�on set.

Accessing Memory

ARMv8 is a load/store RISC (reduced instruc�on set computer) instruc�on set. Perhaps the
defining feature of such an instruc�on set is that memory can only be accessed through
specific instruc�ons. In par�cular, memory can only be read by reading into a register with a
load instruc�on and wri�en to memory by storing from a register using a store instruc�on.

There are many load and store instruc�ons and varia�ons of par�cular instruc�ons. We’ll
start with the simplest:

ldr <ra>, [<rb>] : load value from address in <rb> into <ra>

str <ra>, [<rb>] : store value in <ra> to address in <rb>

The register <rb> is known as the base register. Thus, if r3 = 0x1234 , then:

ldr r0, [r3] // r0 = *r3 (i.e., r0 = *(0x1234))
str r0, [r3] // *r3 = r0 (i.e., *(0x1234) = r0)

You can also provide an offset in the range [-256, 255] :

ldr r0, [r3, #64] // r0 = *(r3 + 64)
str r0, [r3, #-12] // *(r3 - 12) = r0

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf

You can also provide a post-index that changes the value in the base register a�er the load or
store has been applied:

ldr r0, [r3], #30 // r0 = *r3; r3 += 30
str r0, [r3], #-12 // *r3 = r0; r3 -= 12

You can also provide a pre-index that changes the value in the base register before the load or
store has been applied:

ldr r0, [r3, #30]! // r3 += 30; r0 = *r3
str r0, [r3, #-12]! // r3 -= 12; *r3 = r0

Offset, post-index, and pre-index are known as addressing modes.

Finally, you can load and store from two registers at once using the ldp and stp (load pair,
store pair) instruc�ons. These instruc�ons can be used with all of the same addressing modes
as ldr and str :

// push `x0` and `x1` onto the stack. after this operation the stack is:
//
// |------| <x (original SP)
// | x1 |
// |------|
// | x0 |
// |------| <- SP
//
stp x0, x1, [SP, #-16]!

// pop `x0` and `x1` from the stack. after this operation, the stack is:
//
// |------| <- SP
// | x1 |
// |------|
// | x0 |
// |------| <x (original SP)
//
ldp x0, x1, [SP], #16

// these four operations perform the same thing as the previous two
sub SP, SP, #16
stp x0, x1, [SP]
ldp x0, x1, [SP]
add SP, SP, #16

// same as before, but we are saving and restoring all of x0, x1, x2, and x3.
sub SP, SP, #32
stp x0, x1, [SP]
stp x2, x3, [SP, #16]

ldp x0, x1, [SP]
ldp x2, x3, [SP, #16]
add SP, SP, #32

Loading Immediates

An immediate is another name for an integer whose value is known without any computa�on.
To load a 16-bit immediate into a register, op�onally shi�ed to the le� by a mul�ple of 16-
bits, use mov (move). To load a 16-bit immediate shi�ed by le� some number of bits without
replacing any of the other bits, use the movk (move/keep) instruc�on. An example of their
usage:

mov x0, #0xABCD, LSL #32 // x0 = 0xABCD00000000
mov x0, #0x1234, LSL #16 // x0 = 0x12340000

mov x1, #0xBEEF // x1 = 0xBEEF
movk x1, #0xDEAD, LSL #16 // x1 = 0xDEADBEEF
movk x1, #0xF00D, LSL #32 // x1 = 0xF00DDEADBEEF
movk x1, #0xFEED, LSL #48 // x1 = 0xFEEDF00DDEADBEEF

Note that immediates are prefixed with a # , that the des�na�on register appears to the le�,
and that LSL specifies the le� shi�.

Only 16-bit immediates with op�onal shi�s can be loaded into a register. The assembler is
able to figure out the right shi� value in many cases. For instance, the assembler is able to
convert mov x12, #(1 << 21) into a mov x12, 0x20, LSL #16 automa�cally.

Loading Addresses from Labels

Sec�ons of assembly code can be labled using <label>: :

add_30:
 add x1, x1, #10
 add x1, x1, #20

To load the address of the first instruc�on a�er the label, you can either use the adr or ldr

instruc�ons:

adr x0, add_30 // x0 = address of first instruction of add_30
ldr x0, =add_30 // x0 = address of first instruction of add_30

You must use ldr if the label is not within the same linker sec�on as the instruc�on. If the
label is within the same sec�on, you should use adr .

Moving Between Registers

You can move values between registers with the mov instruc�on as well:

mov x13, #23 // x13 = 23
mov sp, x13 // sp = 23, x13 = 23

Loading from Special Registers

Special and system registers such as ELR_EL1 can only be loaded/stored from other registers
using the mrs and msr instruc�on.

To write to a special register from another register, use msr :

msr ELR_EL1, x1 // ELR_EL1 = x1

To read from a special register into another register, use mrs :

mrs x0, CurrentEL // x0 = CurrentEL

Arithmetic

The add and sub instruc�on can be used to perform arithme�c. The syntax is:

add <dest> <a> // dest = a + b
sub <dest> <a> // dest = a - b

For example:

mov x2, #24
mov x3, #36
add x1, x2, x3 // x1 = 24 + 36 = 60
sub x4, x3, x2 // x4 = 36 - 24 = 12

The parameter can also be an immediate:

sub sp, sp, #120 // sp -= 120
add x3, x1, #120 // x3 = x1 + 120
add x3, x3, #88 // x3 += 88

Logical Instructions

The and and orr instruc�on perform bitwise AND and OR . Their usage is iden�cal to that
of add and sub :

mov x1, 0b11001
mov x2, 0b10101

and x3, x1, x2 // x3 = x1 & x2 = 0b10001
orr x3, x1, x2 // x3 = x1 | x2 = 0b11101
orr x1, x1, x2 // x1 |= x2
and x2, x2, x1 // x2 &= x1

and x1, x1, #0b110 // x1 &= 0b110
orr x1, x1, #0b101 // x1 |= 0b101

Branching

Branching is another term for jumping to an address. A branch changes the PC to a given
address or address of a label. To uncondi�onally jump to a label, use the b instruc�on:

b label // jump to label

To jump to a label while storing the next address in the link register, use bl . The ret

instruc�on jumps to the address in lr :

my_function:
 add x0, x0, x1
 ret

mov x0, #4
mov x1, #30
bl my_function // lr = address of `mov x3, x0`
mov x3, x0 // x3 = x0 = 4 + 30 = 34

The br and blr instruc�on are the same as b and bl , respec�vely, but jump to an
address contained in a register:

ldr x0, =label
blr x0 // identical to bl label
br x0 // identical to b label

Conditional Branching

The cmp instruc�on compares values in two registers or a register and an immediate and sets
flags for future condi�onal branching instruc�ons such as bne (branch not equal), beq

(branch if equal), blt (branch if less than), and so on (ref: C1.2.4):

// add 1 to x0 until it equals x1, then call `function_when_eq`, then exit
not_equal:
 add x0, x0, #1
 cmp x0, x1
 bne not_equal
 bl function_when_eq

exit:
 ...

// called when x0 == x1
function_when_eq:
 ret

Using an immediate:

cmp x1, #0
beq x1_is_eq_to_zero

Note that if the branch is not taken, execu�on simply con�nues forward.

Interface with Rust

Now go to the aarch64 subdirectory again and start reviewing the remaining files. Here is
brief descrip�on of each files in the library.

asm.rs - Internally use of inline assembly to wrap as a func�on.
macros.rs - Define macros used in this library
regs.rs - Define registers and provide their interface using macros
sp.rs - Access to the stack pointer
vmsa.rs - Support virtual memory (described later)
lib.rs - Include above modules; Has some useful func�ons such as current_el() .

As an example, the get() and set() func�on in sp.rs allows you retrieve and change the
current stack pointer at any point in �me. Similarly, the current_el() func�on in lib.rs

returns the excep�on level the CPU is currently execu�ng in, otherwise known as the current
excep�on level.

Recap

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://doc.rust-lang.org/unstable-book/library-features/asm.html

There are many more instruc�ons in the ARMv8 instruc�on set. With these as a basis, you
should be able to pick up most of the remaining instruc�ons with ease. The instruc�ons are
documented in (ref: C3). For a concise reference of the instruc�ons presented above, see this
ISA cheat sheet by Griffin Dietz. Before con�nuing, answer the following ques�ons:

 How would you write memcpy in ARMv8 assembly? (asm-memcpy)

Assuming that the source address is in x0 , the des�na�on address is in x1 , and the
number of bytes to copy is in x2 , which is guaranteed to be a non-zero mul�ple of 8,
how would you implement memcpy in ARMv8 assembly? Ensure you ret .

 Hint

You can implement this in just 6 or 7 lines.

 How would you write 0xABCDE to ELR_EL1 ? (asm-movk)

Assume you’re running in EL1 , how would you write the immediate 0xABCDE to ELR_EL1

using ARMv8 assembly?

 Hint

You’ll need three instruc�on.

What does the cbz instruc�on do? (asm-cbz)

Read the documenta�on for the cbz instruc�on in (ref: C6.2.36). What does the
instruc�on do? How would you use it?

What does init.rs do? (init)

Up un�l lab 3, we used kern/src/init/init.s as the first piece of code that runs in our
kernel. kern/src/init.rs now replaced that role. In par�cular, the _start func�on will be
at address 0x80000 when the Raspberry Pi boots, and the firmware will jump to this
address as soon as it is done ini�alizing the system. Soon, you’ll modify this file to switch
to EL1 and setup excep�on vectors.

Read all of the code in kern/src/init.rs . Then, for every func�on in the file, explain what
the code is doing. For example, to explain the _start func�on, we might say:

“The [7:0] bits of the MPIDR_EL1 register (ref: D7.2.74) are read (Aff0), yielding the core
number that’s currently execu�ng code. If the number is zero,
KERN_STACK_BASE(0x80_000) is set to stack pointer and kinit() is called.

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/AArch64-ISA-Cheat-Sheet.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf

 Hint

Refer to the manual for any instruc�on/register you’re not familiar with yet.

 Hint

aarch64 library and kern/src/param.rs will be needed while reviewing init.rs

Subphase C: Switching to EL1

In this subphase, you will write the Rust code to switch from EL2 to EL1. You will be working
primarily in kern/src/init.rs and kern/src/main.rs . We recommend that you only proceed to
this subphase a�er you have answered the ques�ons from the previous subphases.

Current Exception Level

As men�oned before, the CPU should be running in EL2 when our kernel is called. Confirm
this now by prin�ng the current excep�on level in kmain() . Note that you’ll need to use
unsafe to call current_el() ; we’ll remove this call once we’ve confirmed that we’ve switched
to EL1 successfully. current_el() is in the lib/aarch64 library and you need to add it to solve
dependency issue.

Switching

Now, you’ll finish wri�ng the assembly to switch to EL1. Find the line in kern/src/init.rs

marked:

// FIXME: eret to itself, expecting current_el() == 1 this time

Above this line, you’ll see following code.

SPSR_EL2.set(
 (SPSR_EL2::M & 0b0101)
 | SPSR_EL2::F
 | SPSR_EL2::I
 | SPSR_EL2::D
 | SPSR_EL2::A,
);

From the previous subphase, you should know what these do. In par�cular, you should know
which bits are being set in SPSR_EL2 and what the implica�ons will be if an eret occurs
therea�er.

Complete the switching rou�ne now by replacing the FIXME with the proper code. Ensure
that on the switch to EL1, the CPU jumps to switch_to_el1 recursively with the proper
excep�on level to bypass the internal check current_el() == 2 and just move on to kmain() .
You’ll need exactly two lines of code to complete the rou�ne. Recall that the only way to
decrease the excep�on level is via an eret . Once you have completed the rou�ne, ensure
that current_el() now returns 1 .

 Hint

Which register is used to set the PC on excep�on return?

Subphase D: Exception Vectors

In this subphase, you’ll setup and install excep�on vectors and an excep�on handler. This will
be the first step towards enabling your kernel to handle arbitrary excep�ons and interrupts.
You’ll test your excep�on vector and excep�on handling code by implemen�ng a �ny
debugger that starts in response to a brk #n instruc�on. You will be working primarily in
kernel/src/init/vectors.s , kernel/src/traps.rs and the kernel/src/traps directory.

Overview

Recall that the vector table consists of 16 vectors, where each vector is a series of at most 16
instruc�ons. We’ve set apart space in vectors.s for these vectors and have placed the
vectors label at the base of the table. This vectors.s file will be included to init.rs with
global_asm! macro. Your task will be to populate the table with the 16 vectors such that,

ul�mately, the handle_exception Rust func�on in kernel/src/traps.rs is called with the proper
arguments when an excep�on occurs. All excep�ons will be routed to the handle_exception

func�on. The func�on will determine why an excep�on has occurred and dispatch the
excep�on to higher-level handlers as needed.

Calling Convention

In order to properly call the handle_exception func�on declared in Rust, we must know how
the func�on expects to be called. In par�cular, we must know where the func�on should
expect to find the values for its parameters info , esr , and tf , what it promises about the
state of the machine a�er the func�on is called, and how it will return to the site of the
func�on call.

This problem of knowing how to call foreign func�ons arises whenever one language calls
into another (as in lab 3 between C and Rust). Instead of having to know how every language
expects its func�ons to be called, calling conven�ons are established. A calling conven�on, or
procedure call standard, is a set of rules that dictates the following:

How to pass parameters to a func�on.

On AArch64, the first 8 parameters are passed in registers r0 … r7 , in that order from
le�-to-right.

How to return values from a func�on.

On AArch64, the first 8 return values are passed in registers r0 … r7 .

Which state (registers, stack, etc.) the func�on must preserve.

Registers are usually categorized as either caller-saved or callee-saved.

A caller-saved register is not guaranteed to be preserved across a func�on call. Thus, if
the caller requires the value in the register to be preserved, it must save the register’s
value before calling the func�on.

On the contrary, a callee-saved register is guaranteed to be preserved across a func�on
call. Thus, if a callee wishes to use the register during the func�on call, it must save
the register’s value before doing so and restore it before returning.

Register values are typically saved and restored by pushing and popping from the
stack.

On AArch64, registers r19 … r29 and SP are callee-saved. The remaining general
purpose registers are caller-saved. Note that this includes lr (x30). SIMD/FP
registers have complicated saving rules. For our purposes, it suffices to say that they
are all caller-saved.

How to return to the caller.

On AArch64, the lr register holds the link address: the address the callee should
jump to when it returns. The ret instruc�on branches to lr , so it o�en terminates a
func�on.

The AArch64 calling conven�on is described in (guide: 9) as well as in the official procedure
call standard documenta�on. When you call the handle_exception Rust func�on from
assembly, you’ll need to ensure that you adhere to this calling conven�on.

 How does Rust know which conven�on to use?

Strictly adhering to a calling conven�on precludes all kinds of op�miza�ons on func�on
calls and bodies. As a result, Rust’s func�ons are not guaranteed to abide to a par�cular
calling conven�on by default. To force Rust to compile a func�on exactly according to the
calling conven�on of the target pla�orm, the extern func�on qualifier can be used.
We’ve already declared handle_exception as extern , so we can be sure that Rust will
compile the func�on appropriately.

Vector Table

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf
https://tc.gts3.org/cs3210/2020/spring/r/AArch64-Procedure-Call-Standard.pdf

To help you populate the vector table, we’ve provided the HANDLER source, kind macro which
expands to a series of 8 instruc�ons aligned to the next valid vector entry. When
HANDLER a, b is used as an “instruc�on”, it expands to the lines that reside between .macro

and .endm . In other words, this:

vectors:
 HANDLER 32, 39

Expands to the following:

vectors:
 .align 7
 stp lr, xzr, [SP, #-16]!
 stp x28, x29, [SP, #-16]!

 mov x29, #32
 movk x29, #39, LSL #16
 bl context_save

 ldp x28, x29, [SP], #16
 ldp lr, xzr, [SP], #16
 eret

The expanded code pushes lr , xzr , x28 and x29 to the stack, creates a 32-bit value in
x29 where the lower 16-bits are source and the upper 16-bits are kind , and calls the
context_save assembly func�on (declared above vectors in vectors.s). When that func�on

returns, it restores saved four registers from the stack and finally returns from the excep�on.

The context_save func�on currently does nothing: it simply falls through to a ret from
context_restore below. Soon, you will modify the context_save func�on so that it correctly

calls the handle_exception Rust func�on.

Syndrome

When a synchronous excep�on occurs (an excep�on caused by the execu�on or a�empted
execu�on of an instruc�on), the CPU sets a value in a syndrome register (ESR_ELx) that
describes the cause of the excep�on (ref: D1.10.4). We’ve set up structures in
kernel/src/traps/syndrome.rs that should parse the syndrome value into a meaningful
Syndrome enum . You will soon write code that passes the ESR_ELx value to the Rust func�on

as the esr parameter. You’ll then use Syndrome::from(esr) to parse the syndrome value which
determines what to do next.

Info

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf

The handle_exception Rust func�on takes an Info structure as the first parameter. The
structure has two 16-bit fields: the first corresponds to the source, and the second
corresponds to the kind of excep�on. As you may have guessed, this is exactly the 32-bit

value that the HANDLE macro sets up in x29 . You’ll need to move this x29 to x0 within
context_save code block in order to pass it as the first parameter. In addi�on, please ensure

that you use the correct HANDLE invoca�ons for the correct entries so that the Info

structure is correctly created.

Implementation

You’re now ready to implement preliminary excep�on handling code. The first excep�on you
will handle is the brk excep�on (a so�ware breakpoint). When such an excep�on occurs,
you’ll start up a shell that would theore�cally allow you explore the state of the machine at
that point in its execu�on.

Start by inser�ng a call to brk in main.rs . Instead of using inline assembly, you can call brk

macro defined in asm.rs of aarch64 library.

Then, proceed as follows:

1. Populate the vectors table using the HANDLE macro.

Ensure that your entries would correctly create the Info structure. Refer to (guide:
10.4) to check the entry order. The source and kind of handler should be matched
with Source and Kind enum in src/traps.rs .

2. Call the handle_exception func�on in context_save .

Ensure that you save/restore any caller-saved registers as needed and that you pass
the appropriate parameters. For now, you can pass in 0 for the tf parameter; we’ll
be using this later. Refer src/traps.rs to see what to pass for arguments.

Note: AArch64 requires the SP register to be 16-byte aligned whenever it is used as
part of a load or store. Ensure that you keep SP 16-byte aligned at all �mes.

3. Setup the correct VBAR register at the comment marked in init.rs .

// FIXME: load `vectors` addr into appropriate register (guide: 10.4)

4. At this point, your handle_exception func�on should be called whenever an excep�on
occurs.

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf

In handle_exception , print the value of the info and esr parameters and ensure that
they are what you expect. Then, loop endlessly in the handler. You’ll want to call
aarch64::nop() in the loop to ensure it doesn’t get op�mized away. We will need to

write more code to properly return from the excep�on handler, so we’ll simply loop for
now. We will fix this in the next subphase.

5. Implement the Syndrome::from() and the Fault::from() methods.

The former should call the la�er. You’ll need to refer to (ref: D1.10.4, ref: Table D1-8)
to implement these correctly. Clicking on the “ISS encoding descrip�on” in the table
gives you details about how to decode the syndrome for a par�cular excep�on class
as well as decode for Fault . You should ensure, for example, that a brk 12 is decoded
as Syndrome::Brk(12) . Similarly, a svc 77 should be parsed as a Syndrome::Svc(77) .
Note that we have excluded the 32-bit variants of some excep�ons and coalesced
excep�ons when they are iden�cal but occur with differing excep�on classes.

 Use aarch64 library!

Instead of using inline assembly and raw bit opera�on for each register, use pre-
defined registers and func�ons in aarch64 library to your advantage. You will find
REG_NAME::get_value(raw_value, REG_NAME::MASK) func�on useful.

6. Start a shell when a brk excep�on occurs.

Use your Syndrome::from() method in handle_exception to detect a brk excep�on.
When such an excep�on occurs, start a shell. You may wish to use a different shell
prefix to differen�ate between shells. Note that you should only call Syndrome::from()

for synchronous excep�ons. The ESR_ELx register is not guaranteed to hold a valid
value otherwise.

At this point, you’ll also need to modify your shell to implement a new command:
exit . When exit is called, your shell should end its loop and return. This will allow

us to exit from a brk excep�on later. Because of this change, you’ll also need to wrap
your invoca�on to shell() in kmain in a loop { } to prevent your kernel from exi�ng
and crashing.

Once you are finished, the brk 2 instruc�on in kmain should result in an excep�on with
syndrome Brk(2) , source CurrentSpElx , and kind Synchronous being routed to the
handle_exception func�on. At that point, a debug shell should start. When exit is called

from the shell, the shell should terminate, and the excep�on handler should begin to loop
endlessly.

Before proceeding, you should ensure that you detect other synchronous excep�ons
correctly. You should try calling other excep�on-causing instruc�ons such as svc 3 . You
should also try purposefully causing a data or instruc�on abort by jumping to an address
outside of the physical memory range.

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf

Once everything works as expected, you’re ready to proceed to the next phase.

Subphase E: Exception Return

In this subphase, you will write the code to enable correct returns from an excep�on of any
kind. You will be working primarily in kern/init/vectors.s , kern/src/traps.rs and the
kern/src/traps directory.

Overview

If you try removing the endless loop in handle_exception now, your Raspberry Pi will likely
enter an excep�on loop, where it repeatedly enters the excep�on handler, or crash en�rely
when you exit from your debug shell. This is because when your excep�on handler returns
to whatever code was running previously, the state of the processor (its registers, primarily)
has changed without the code accoun�ng for it.

As an example, consider the following assembly:

1: mov x3, #127
2: mov x4, #127
3: brk 10
4: cmp x3, x4
5: beq safety
6: b oh_no

When the brk excep�on occurs, your excep�on vector will be called, eventually calling
handle_exception . The handle_exception func�on, as compiled by Rust, will make use of the
x3 and x4 registers (among others) for processing. If your excep�on handler returns to the

site of the brk call, the state of x3 and x4 is unknown, and the beq safety instruc�on on
line 5 is not guaranteed to branch to safety .

As a result, in order for our excep�on handler to be able to use the machine as it desires,
we’ll need to ensure that we save all of the processing context (the registers, etc.) before we
call our excep�on handler. Then, when the handler returns, we’ll need to restore the
processing context so that the previously execu�ng code con�nues to execute flawlessly.
This process of saving and restoring a processing context is known as a context switch.

What makes it a context switch?

The inclusion of the word switch can be a bit deceiving. A�er all, aren’t we simply
returning to the same context?

In fact, we rarely want to return to the same context. Instead, we typically want to modify
the context before we return so that the CPU executes things just a li�le bit differently.
For example, when we implement process switching, we’ll swap out the context of one

process for another’s, mul�plexing CPU �me. When we implement system calls, we’ll
modify the values of registers to inject return values. And finally, when we return from a
breakpoint excep�on, we’ll need to modify the return address in ELR so that the next
instruc�on executes instead of the same one.

Soon, you’ll write the code to save all of the processing context into a structure known as a
trap frame. You’ll finish the defini�on of the TrapFrame structure in kern/src/traps/frame.rs so
that you can access and modify the trap frame from Rust, and you’ll write the assembly to
save and restore the trap frame as well as pass a pointer to the trap frame to the
handle_exception func�on in the tf parameter.

Trap Frame

The trap frame is the name we give to the structure that holds all of the processing context.
The name “trap frame” comes from the term “trap” which is a generic term used to describe
the mechanism by which a processor invokes a higher privilege level when an event occurs.
We say that the processor traps to the higher privilege level.

There are many ways to create a trap frame, but all approaches are effec�vely the same: they
save all of the state necessary for execu�on in memory. Most implementa�ons push all of the
state onto the stack. A�er pushing all of the state, the stack pointer itself becomes a pointer
to the trap frame. We’ll be taking exactly this approach.

For now, the complete execu�on state of our Cortex-A53 consists of:

x0…x30 - all 64-bits of all 31 general purpose registers
q0…q31 - all 128-bits of all SIMD/FP registers
TPIDR - the 64-bit “thread ID” register

This is stored in TPIDR_ELs when the source of the excep�on is at level s .
sp - the stack pointer

This is stored in SP_ELs when the source of the excep�on is at level s .
PSTATE - the program state

Recall that this is stored in SPSR_ELx when an excep�on is taken to ELx .
pc - the program counter

The register ELR_ELx stores the preferred link address, which may or may not be the PC
that the CPU had when the excep�on is taken. Typically, the ELR_ELx is either the PC
when the excep�on is taken, or PC + 4 .

We’ll need to save all of this context in the trap frame by pushing the relevant registers onto
the stack before calling the excep�on handler and then restore the trap frame by popping
from the stack when the handler returns. A�er saving all of the state, the stack should look
as follows:

Please double check each register whether it uses _ELx or _ELs . Note that SP and TPIDR in
the trap frame should be the stack pointer and thread ID of the source, not the target. Since
the only eventual source of excep�on will be EL0 , you should save/restore the SP_EL0 and
TPIDR_EL0 registers. When all state has been pushed, the CPU’s true SP (the one used by the

excep�on vector) will point to the beginning of the trap frame.

Finally, you’ll pass a pointer to the trap frame as the third argument to handle_exception . The
type of the argument is &mut TrapFrame ; TrapFrame is declared in kern/src/traps/frame.rs .
You’ll need to define the TrapFrame struct so that it exactly matches the trap frame’s layout.

What’s a thread ID?

The TPIDR register (TPIDR_ELx) allows the opera�ng system to store some iden�fying
informa�on about what’s currently execu�ng. Later, when we implement process, we’ll
store the process’s ID in this register. For now, we’ll save and restore this register for
posterity.

Preferred Exception Return Address

When an excep�on is taken to ELx , the CPU stores a preferred link address, or preferred
excep�on return address in ELR_ELx . This value is defined in (ref: D1.10.1) as follows:

https://tc.gts3.org/cs3210/2020/spring/_images/trap-frame.png
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf

1. For asynchronous excep�ons, it is the address of the first instruc�on that did not execute,
or did not complete execu�on, as a result of taking the interrupt.

2. For synchronous excep�ons other than system calls, it is the address of the instruc�on
that generates the excep�on.

3. For excep�on genera�ng instruc�ons, it is the address of the instruc�on that follows the
excep�on genera�ng instruc�on.

A brk instruc�on falls into the second category. As such, if we want to con�nue execu�on
a�er a brk instruc�on, we’ll need to ensure that ELR_ELx contains the address of the next
instruc�on before returning. Since all instruc�ons are 32-bits wide on AArch64, this is simply
ELR_ELx + 4 .

Implementation

Start by implemen�ng the context_save and context_restore rou�nes in kern/init/vectors.s .
The context_save rou�ne should push all of the relevant registers onto the stack and then call
handle_exception , passing a pointer to the trap frame as the third argument. Then implement
context_restore , which should do nothing more than restore the context.

Note that the instruc�ons generated by the HANDLER macro already save and restore x28 ,
x29 , x30(lr) , and x31(xzr) . You should not save and restore these registers in your
context_{save,restore} rou�nes, but your trap frame must s�ll contain these registers.

Technically there is no need to save and restore xzr register since it always contains zero.
We save it just to make SP 16-byte aligned.

To minimize the impact on performance for the context switch, you should push/pop
registers from the stack as follows:

// pushing registers `x1`, `x5`, `x12`, and `x13`
stp x1, x5, [SP, #-16]!
stp x12, x13, [SP, #-16]!

// popping registers `x1`, `x5`, `x12`, and `x13`
ldp x1, x5, [SP], #16
ldp x12, x13, [SP], #16

Once you have implemented these rou�nes, finish defining TrapFrame in
kern/src/traps/frame.rs . Ensure that the order and size of the fields exactly match the trap

frame you create and pass a pointer to in context_save .

Finally, in handle_exception , remove the endless loop and increment the ELR in the trap
frame by 4 before returning from a brk excep�on. Once you have successfully
implemented the context switch, your kernel should con�nue to run as normal a�er exit ing
from the debug shell. When you are ready, proceed to the next phase.

 Trap Frame Layout

Your trap frame doesn’t need to exactly match the diagram, but it should contain all of the
same data.

 q0 .. q31

Don’t forget that the qn registers are 128-bits wide!

 Hint

To call handle_exception , you’ll need to save/restore a register that’s not part of the trap
frame.

 Hint

Rust has two 128-bit integer types: u128 and i128 .

 Hint

Use the mrs and msr instruc�on to read/write special registers.

 Hint

Our context_save rou�ne is exactly 42 instruc�ons.

 Hint

Our context_restore rou�ne is exactly 37 instruc�ons.

 Hint

Our TrapFrame contains 6 fields (two of them are arrays) and is 792 bytes in size without
xzr register.

 How could you lazy-load floa�ng point registers? (lazy-float)

Saving and restoring the 128-bit SIMD/FP registers is very expensive; they account for
512 of the 792 bytes in the TrapFrame ! It would be ideal if we saved/restored these
registers only if they were actually in use by the source of the excep�on or the target of a
context switch.

The AArch64 architecture allows the use of these registers to be selec�vely enabled and
disabled. When SIMD/FP is disabled, an instruc�on that uses the registers traps. How
could you use this func�onality to implement lazy-loading of SIMD/FP registers so that
they’re only saved/restored on context switches if they’re being used while con�nuing to
allow the registers and SIMD/FP instruc�ons to be used freely? Be specific about what
you would do when specific excep�ons occur, whether you would need to modify the
TrapFrame struct, and what addi�onal state you’d need to maintain.

Phase 2: It’s a Process

In this phase, you will implement user-level processes. You’ll start by implemen�ng a Process

struct that will maintain a process’s state. You’ll then bootstrap the system by star�ng the
first process. Then, you’ll implement a �ck-based, round-robin scheduler. To do so, you’ll first
implement an interrupt controller driver and enable �mer interrupts. Then, you’ll invoke your
scheduler when a �mer interrupt occurs, performing a context switch to the next process.
Finally, you’ll implement your first system call: sleep .

A�er comple�ng this subphase, you’ll have built a minimal but complete mul�tasking
opera�ng system. For now, processes will be sharing physical memory with the kernel and
other processes. In the next phase, we will enable virtual memory to isolate processes from
one another and protect the kernel’s memory from untrusted processes.

Subphase A: Processes

In this subphase, you’ll complete the implementa�on of the Process structure in
kern/src/process/process.rs . You’ll use your implementa�on to start the first process in the

next subphase.

What’s a Process?

A process is a container for code and data that’s executed, managed, and protected by the
kernel. They are the singular unit by which non-kernel code executes: if code is execu�ng, it
is either execu�ng as part of a process or execu�ng as part of the kernel. There are many
opera�ng system architectures, especially in the research world, but they all have a concept
that largely mirrors that of a process.

Processes typically run with a reduced set of privileges (EL0 for our OS) so that the kernel
can ensure system stability and security. If one process crashes, we don’t want other
processes to crash or for the en�re machine to crash with it. We also don’t want processes to
be able to interfere with one another. If one process hangs, we don’t want other processes to
be unable to make progress. Processes provide isola�on: they operate largely independently
of one another. You likely see these proper�es of processes every day: when your web
browser crashes or hangs, does the rest of the machine crash or hang as well?

Implemen�ng processes, then, is about crea�ng the structures and algorithms to protect,
isolate, execute, and manage untrusted code and data.

What’s in a Process?

To implement processes, we’ll need to keep track of a process’s code and data as well as
auxiliary informa�on to allow us to properly manage and isolate mul�ple processes. This
means keeping track of a process’s:

Stack

Each process needs a unique stack to execute on. When you implement processes,
you’ll need to allocate a sec�on of memory suitable for use as the process’s stack.
You’ll then need to bootstrap the process’s stack pointer to point to this region of
memory.

Heap

To enable disjoint dynamic memory alloca�on, each process will also have its own
heap. The heap will start empty but can be expanded on request via a system call. In
lab 4, we won’t implement the heap and will support user programs that only require
the stack.

Code

A process isn’t very useful unless it’s execu�ng code, so the kernel will need to load
the process’s code into memory and execute it when appropriate.

Virtual address space

Because we don’t want processes to have access to the kernel’s memory or the
memory of other processes, each process will be confined to a separate virtual address
space using virtual memory.

Scheduling state

There are typically many more processes than there are CPU cores. The CPU can only
execute one instruc�on stream at a �me, so the kernel will need to mul�plex the CPUs
�me (and thus, instruc�on stream) to execute processes concurrently. It is the
scheduler’s job to determine which process gets to run when and where. To do so
correctly, the scheduler needs to know if a process is ready to be scheduled. The
scheduling state keeps track of this.

Execu�on state

To correctly mul�plex the CPUs �me amongst several processes, we’ll need to ensure
that we save a process’s execu�on state when we switch it off the CPU and restore it
when we switch it back on. You’ve already seen the structure we use to maintain
execu�on state: the trap frame. Each process maintains a trap frame to properly
maintain its execu�on state.

A process’s stack, heap, and code make up all of the physical state of a process. The rest of
the state is necessary for the isola�on, management, and protec�on of processes.

The Process structure in kernel/src/process/process.rs will maintain all of this informa�on.
Because all processes will be sharing memory for the �me being, you won’t see any fields for
the process’s heap, code, or virtual address space; you’ll handle these later in the assignment.

 Does a process have to trust the kernel? (kernel-distrust)

It should be clear that a kernel is dis�nc�vely distrus�ul of processes, but does a process
have to trust the kernel? If so, what is it expec�ng from the kernel?

What could go wrong if two processes shared stacks? (isolated-stacks)

Imagine that two processes are execu�ng concurrently and are sharing a stack. First: what
would it mean for two processes to share a stack? Second: why would it be very likely
that the processes would crash fairly quickly into their lives? Third: define a property of
processes that, even if they were sharing a stack, would never crash as a result of sharing
a stack. In other words, what would two processes that run concurrently and share a
stack but never crash as a result of this sharing look like?

Implementation

You’ll now start the implementa�on of the Process structure in kern/src/process/process.rs .
Before you begin, read the implementa�on of the Stack structure that we provided for you
in kern/src/process/stack.rs . Ensure that you know how to use the structure to allocate a
new stack and retrieve a pointer to the stack for a new process. Then, read the
implementa�on of the State structure, which will be used to keep track of the scheduling
state, that we have provided for you in kern/src/process/state.rs . Try to reason about how
you’d interpret the different variants when scheduling processes.

Finally, only implement the Process::new() method. The implementa�on will be simple;
there’s nothing complex about keeping track of state! You will finish the implementa�on of
the process structure later on. When you’re ready, proceed to the next subphase.

 How is the stack’s memory reclaimed? (stack-drop)

The Stack structure allocates a 16-byte aligned 1MiB block of memory when it is
created. What ensures that this memory is freed when the Process that owns it is no
longer around?

 How could you lazily allocate memory for the stack? (lazy-stacks)

The Stack structure allocates 1MiB of memory for the stack regardless of whether or
how much of the stack the process actually uses. Thinking ahead to virtual memory, how
might we use virtual memory to lazily allocate memory for the stack so that no or minimal
memory is used by the stack un�l it’s needed?

 How could a process increase its stack size? (stack-size)

Some processes will require significantly more stack space than 1MiB, but our simple
design allocates exactly 1MiB of stack space for all processes. Assuming processes have
access to dynamic memory alloca�on, how could a process increase its stack size? Be
specific about which instruc�ons the process would execute.

Subphase B: The First Process

In this subphase, we’ll start the first user-space (EL0) process. You will be working primarily
in kern/src/process/scheduler.rs and kern/src/main.rs .

Context Switching Processes

You’ve already done most of the work that will allow you to context switch between
processes. To context switch between processes in response to an excep�on, you will:

1. Save the trap frame as the current process’s trap frame in its context field.
2. Restore the trap frame of the next process to execute from its context field.
3. Modify the scheduling state to keep track of which process is execu�ng.

Unfortunately, to context switch into the first process, we’ll need to deviate from this plan a
bit. It would be incorrect to execute one of the steps above before the first process. Can you
tell which?

Let’s see what would happen if we followed these steps before the first process. First, an
excep�on occurs which prompts a context switch. We’ll later see that this will be a �mer
interrupt which drives the process scheduler. Then we follow step 1: in response to the
excep�on, we store the current trap frame in the current process’s context field. Note,
however, that there is no current process yet! And so Later, as part of step 2, we restore the
next process’s context and return.

Because the excep�on wasn’t taken while the process running, the trap frame we save, and
later restore, will have li�le in rela�on to the process itself. In other words, we’ve clobbered
the process’s trap frame with an unrelated one. Thus, we can’t possibly run step 1 without a
valid process’s trap frame first. In other words, to properly context switch into the first
process, it seems that the process needs to already be running. Said yet another way, we
can’t properly context switch un�l a�er the first context switch has occurred: catch-22!

To work around this, we’re going to bootstrap context switching by faking the first context
switch. Instead of the trap frame for the first process coming from the context_save rou�ne
you wrote previously, we will manually create the trap frame on the new process’s stack and
call context_restore ourselves, avoiding step 1 above en�rely. Once the first process is
running, all other context switching will work normally.

Kernel Threads

We haven’t yet built a mechanism to load code from the disk into memory. Once we enable
virtual memory, we’ll need to implement the procedures to do so. For now, while we’re
sharing memory with the kernel, we can simply reuse the kernel’s code and data. As long as
the kernel and the processes don’t share local data (the stack), which we’ve ensured they
don’t by alloca�ng a new stack for each process, they will be able to execute concurrently
without issue. What’s more, Rust ensures that there is no possibility of a data race between
the processes.

Sharing memory and other resources between processes is such a common occurrence that
these types of processes have a special name: threads. Indeed, a thread is nothing more than
a process that shares memory and other resources with another process.

Soon, you’ll start the first process. Because that process will be sharing memory with the
kernel, it will be a kernel thread. As such, the extent of the work required to start this first
process is minimal since all of the code and data is already in memory:

1. Bootstrap context switching by se�ng up the “fake” saved trap frame.
2. Call context_restore

3. Switch to EL0 .

While requiring very few lines of code, you’ll find that it requires careful implementa�on for
correctness.

 The term kernel thread is overloaded.

The term kernel thread is used to refer both to threads implemented by the kernel (as
opposed to threads implemented in user space) and threads running in the kernel. It’s an
unfortunate name clash, but context typically clarifies which is meant. As a quick
heuris�c, unless the discussion is about OS development, you should assume that the
discussion is about threads implemented by the kernel.

Implementation

There is a new global variable in kern/src/main.rs , SCHEDULER , of type GlobalScheduler , which
is simply a wrapper around a Scheduler . Both of these types are defined in
kern/src/process/scheduler.rs . The SCHEDULER variable will serve as the handle to the

scheduler for the en�re system.

To ini�alize the scheduler and start execu�ng the first process, the start() method on
GlobalScheduler should be called. Your task is to implement the start() method.

To do so, you will need to:

1. Write an extern func�on that takes no parameters and starts a shell.

You will arrange for this func�on to be called when the process first executes. You can
write this func�on wherever you’d like. We’ll remove it once we’re able to start
processes backed by binaries on the disk.

2. In start() , create a new Process and set-up the saved trap-frame.

You’ll need to set up the process’s trap frame so that when it is restored to the CPU by
context_restore later, your extern func�on executes, the process’s stack pointer

points to the top of the process’s stack, the process is execu�ng in EL0 in the
AAarch64 execu�on state, and IRQ interrupts are unmasked for current EL1 so that
we can handle �mer interrupts from EL0 in the next sec�on.

3. Setup the necessary registers, call context_restore , and eret into EL0.

Once you’ve set up the trap frame, you can bootstrap a context switch to that process
by:

Calling context_restore with the appropriate register(s) set to the appropriate
values.

Note: we are being vague here on purpose! If this feels opaque, consider what
context_restore does, what you want it to do, and how you can make it do that.

Se�ng the current stack pointer (sp) to its ini�al value (the address of
_start). This is necessary so that we can use the en�re EL1 stack when we

take excep�ons later. Note: You cannot ldr or adr into sp directly. You must
first load into a different register and then mov from that register into sp .
Rese�ng any registers that may no longer contain 0 . You should not leak any
informa�on to user-level processes.
Returning to EL0 via eret .

You’ll need to use inline assembly to implement this. As an example, if a variable tf is
a pointer to the trap frame, the following sets the value of x0 to that address and
then copies it to x1 :

unsafe {
 asm!("mov x0, $0
 mov x1, x0"
 :: "r"(tf)
 :: "volatile");
}

You may wish to add an infinite loop at the end of the start() func�on to sa�sfy compiler
since the func�on should not be returned. Once you’ve implemented the method, add a call
to SCHEDULER.start() in kmain and remove any shell or breakpoint invoca�ons. You don’t
need to call SCHEDULER.initialize() yet which will be implemented in Subphase D. Your kmain

should now simply be a series of two ini�aliza�on calls and a scheduler star�ng call such as
below.

unsafe fn kmain() -> ! {

 ALLOCATOR.initialize();
 FILESYSTEM.initialize();
 SCHEDULER.start()

}

If all is well, your extern func�on will be called from EL0 when the kernel starts, running the
shell as a user-level process.

https://doc.rust-lang.org/unstable-book/language-features/asm.html

Before con�nuing, you should also ensure that a context switch back to the same process
works correctly at this point. Try adding a few calls to brk in your extern func�on before
and a�er you start a shell:

extern fn run_shell() {
 unsafe { asm!("brk 1" :::: "volatile"); }
 unsafe { asm!("brk 2" :::: "volatile"); }
 shell::shell("user0> ");
 unsafe { asm!("brk 3" :::: "volatile"); }
 loop { shell::shell("user1> "); }
}

You should be able to return from each of the break point excep�ons successfully. The source
for each of the breakpoint excep�on should be LowerAArch64 , indica�ng a successful switch
to user-space. Once everything works as you expect, proceed to the next subphase.

 Hint

Our inline assembly consists of exactly 6 instruc�ons.

 Hint

Besides the inline assembly, you do not need unsafe .

Subphase C: Timer Interrupts

In this subphase, you will implement a driver for the interrupt controller on the BCM2837.
You’ll also modify your exis�ng system �mer driver to enable �mer interrupts to be
configured. Finally, you’ll enable periodic �mer interrupts to act as the spring-board for
scheduling based context switches. You will be working primarily in lib/pi/src/interrupt.rs ,
lib/pi/src/timer.rs , and kern/src/traps .

Interrupt Handling

On AArch64, interrupts are nothing more than excep�ons of a par�cular class. The key
differen�ator between the two is that interrupts occur asynchronously: they are generated
by an external source in response to external events.

The diagram below illustrates the path an interrupt takes from the source, an external device,
to the sink, an excep�on vector:

Interrupt
Controller

Device
B

CPU

Device
A

IRQ
Exception

Vector

Interrupts can be selec�vely disabled at each point along the path. In order for an interrupt to
be delivered to an excep�on vector, the external device, the interrupt controller, and the CPU
must all be configured to accept the interrupt.

What is an interrupt controller?

An interrupt controller as another external device that acts as a proxy and gate between
interrupt genera�ng devices, like the system �mer, and the CPU. The interrupt controller
is physically connected to the CPU’s interrupt pins. When an input pin on the interrupt
controller is signaled, the interrupt controller forwards the signal to the CPU.

The extra layer of indirec�on allows for interrupts to be selec�vely enabled and disabled.
It also allows CPU manufacturers to choose which, if any, interrupt controller they want
to bundle with the CPU.

External Device

You’ve already wri�en a device driver for the system �mer. In this subphase, you will extend
your driver to enable configura�on of the �mer’s compare registers. The system �mer
con�nuously compares the current �me to the values in the compare registers and generates
an interrupt when the values equal.

Interrupt Controller

The system �mer delivers interrupts to the interrupt controller, which must then be
configured to deliver interrupts to the CPU. You will write a device driver for the interrupt
controller to do exactly this.

When the interrupt controller receives an interrupt, it marks the interrupt as pending and
forwards it to the CPU by holding a physical interrupt pin on the CPU logically high. For some
interrupts, including system �mer interrupts, the pin is held high un�l the interrupt is
acknowledged. This means that the interrupt will be con�nuously delivered un�l it is
acknowledged. Once the interrupt is acknowledged, the interrupt pin is released, and the
pending flag is unset.

https://tc.gts3.org/cs3210/2020/spring/_images/int-chain.svg

CPU

Interrupts must be unmasked for the CPU to deliver them to excep�on vectors. By default,
interrupts are masked by the CPU, so they will not be delivered. The CPU may deliver
interrupts that were received while interrupts were masked as soon as interrupts are
unmasked. When the CPU invokes an excep�on vector, it also automa�cally masks all
interrupts. This is so that interrupts which are held high un�l they are handled, like system
�mer interrupts, don’t immediately result in an excep�on loop.

In the previous subphase, you configured interrupts to be delivered when processes are
execu�ng in EL0 , so there’s no addi�onal work to do on this front.

When would you unmask IRQs while handling an IRQ? (reentrant-irq)

Although our kernel keeps IRQs masked in excep�on handling rou�ne, thus does not
support nested interrupt handling, it turns out that unmasking IRQs while handling IRQs is
a fairly common occurrence in commodity opera�ng systems. Can you come up with a
scenario in which you’d want to do this? Further, would doing so without first
acknowledging pending IRQs result in an excep�on loop? Why or why not?

Exception Vector

You’ve already configured excep�on vectors. As such, all that’s le� is to properly handle IRQ
(interrupt request) excep�ons. To handle interrupts, we have a global Irq struct which holds
a list of handler func�ons for corresponding interrupt. You can set a handler func�on for each
interrupt by calling register() func�on and execute the registered handler with invoke()

func�on in kern/src/traps/irq.rs . You’ll modify your handle_exception func�on in
kern/src/traps.rs so that it forwards all known interrupt requests to the invoke() func�on.

To determine which interrupt has occurred, you will need to check which interrupts are
pending at the interrupt controller. The handle_irq func�on will then acknowledge the
interrupt and process it.

Implementation

Start by implemen�ng the interrupt controller driver in lib/pi/src/interrupt.rs . The
documenta�on for the interrupt controller is on chapter 7 of the BCM2837 ARM Peripherals
Manual. You only need to handle enabling, disabling, and checking the status of the regular
IRQs described by the Interrupt enum; you needn’t worry about FIQs or Basic IRQs. We are
providing four methods for Interrupt struct. iter() methods can be used when itera�ng
interrupts to check which interrupts are pending. to_index() and from_index() would be
useful when implemen�ng register() and invoke() method.

https://tc.gts3.org/cs3210/2020/spring/r/BCM2837-ARM-Peripherals.pdf

Then, implement the tick_in() method and func�on for your system �mer driver in
lib/pi/src/timer.rs . The documenta�on for the system �mer is on chapter 12 of the

BCM2837 ARM Peripherals Manual. You will need write to two registers to implement
tick_in() correctly.

Now go to the src/traps/irq.rs and implement register() and invoke() methods. The Irq

struct internally holds a list of IrqHandler which is a smart pointer for a handler func�on. You
can set a new handler func�on for an interrupt with register() method, and executes it with
invoke() method.

Then, enable �mer interrupts and set a �mer interrupt to occur in TICK microseconds just
before you start the first process in GlobalScheduler::start() in kern/src/process/scheduler.rs .
The TICK variable is declared in kern/src/param.rs . In addi�on, register an handler func�on
for the �mer. The handler func�on should set a new �mer interrupt to occur in TICK

microseconds, ensuring that �mer interrupts occur every TICK microseconds indefinitely. To
test your implementa�on, you might want to print a message in here.

Modify your handle_exception func�on in kern/src/traps.rs so that it forwards known
interrupts to the invoke() func�on in kern/src/traps/irq.rs .

Finally, add IRQ.initialize() in your kern/src/main.rs before calling SCHEDULER.start() .

When you are finished, you should see a �mer interrupt occur every TICK microseconds
with a source of LowerAArch64 and kind of Irq . You should be able to interact with the
process normally between �mer interrupts. When everything works as you expect, proceed
to the next subphase.

We’ll change the TICK se�ng later on!

We’re currently using an absurdly slow TICK se�ng of 2 seconds to ensure that
everything works as we expect. Typically, this number is between 1 and 10 milliseconds.
We’ll decrease the TICK to a more reasonable 10 ms later on.

Subphase D: Scheduler

In this subphase, you will implement a simple round-robin preemp�ve scheduler. You will be
working primarily in kern/src/process/scheduler.rs and kern/src/process/process.rs .

Scheduling

The scheduler’s primary responsibility is to determine which task to execute next, where a
task is defined as anything that requires execu�on on the CPU. Our opera�ng system is
rela�vely simple, and so the scheduler’s idea of a task will be constrained to processes. As
such, our scheduler will be responsible for determining which process to run next, if any.

https://tc.gts3.org/cs3210/2020/spring/r/BCM2837-ARM-Peripherals.pdf

There are many scheduling algorithms with a myriad of proper�es. One of the simplest is
known as “round-robin” scheduling. A round-robin scheduler maintains a queue of tasks. The
next task to execute is chosen from the front of the queue. The scheduler executes the task
for a fixed �me slice (the TICK), also known as a quantum. When the task has executed for at
most its full quantum, the scheduler moves it to the back of the queue. Thus, a round-robin
scheduler simply cycles through a queue of tasks.

In our opera�ng system, the scheduler marks a task as being in one of four states:

Ready

A task that is ready to be executed. The scheduler will execute the task when its turn
comes up.

Running

A task that is currently execu�ng.

Wai�ng

A task that is wai�ng on an event and is not ready to be executed un�l that event
occurs. The scheduler will check if the event has occurred when the task’s turn comes
up. If the event has occurred, the task is executed. Otherwise, the task loses its turn
and is checked again in the future.

Dead

A task is currently dead (not running nor eligible to run) and ready to be reclaimed.

The State enum in kern/src/process/state.rs represents these states. Each process struct is
associated with a State which the scheduler will manage. Note that the Waiting state
contains a func�on that the scheduler can use to determine if the event being waited on has
occurred.

The diagram below depicts four scheduling rounds of a round-robin scheduler. The task C is
wai�ng on an event that occurs some �me between rounds 3 and 4.

The rounds are:

1. In round 1, there are four tasks in the queue, A , B , C , and D . A , the process at the
head of the queue is currently running on the CPU. C is in a wai�ng state, while the
others are ready or running. When A ’s quantum is used up, it is moved to the back of the
queue.

2. The task from the front of the queue, B , is executed. It is moved to the back of the
queue when its quantum expires.

3. Since C is wai�ng for an event, the scheduler checks to see if the event being waited on
has occurred. At this point it has not, so C is skipped and D is chosen to run next. D is
moved to the front and executed. At the end of the quantum, D is moved to the back of
the queue.

4. Since C is s�ll in wai�ng state, the scheduler checks to see if the event has occurred. At
this point it has, so C is scheduled. A�er its �me quantum, C is moved to the back of
the queue.

Would separa�ng ready and wai�ng tasks be beneficial? (wait-queue)

An alterna�ve implementa�on of a round-robin scheduler maintains two queues: a ready
queue, consis�ng of only ready tasks, and a wait queue, consis�ng only of wai�ng tasks.
How would you make use of the queues in the round-robin scheduler? Do you expect
performance (average task latency/throughput) to be be�er or worse?

https://tc.gts3.org/cs3210/2020/spring/_images/round-robin.png

Code Structure

The Scheduler structure in kern/src/process/scheduler.rs maintains a queue of processes to
execute. Processes are added to the queue via the the Scheduler::add() method. The method
is also responsible for assigning unique IDs to processes. IDs are stored in the process’s
TPIDR register.

When a scheduling change is required, the Scheduler::schedule_out() and
Scheduler::switch_to() method is invoked. As their name suggests, schedule_out() method

changes the current process’s state to new_state , saves the current trap frame in the current
process, and push the current process back to the end of scheduling queue. Recalling that our
Raspberry Pi board has 4 cores, there might exist mul�ple process with Running state up to
the number of cores. Thus, you have to find current process based on the process id within
current trapframe. switch_to() method finds the next process to execute, moves the next
process to the front of the queue, restores the next process’s trap frame, and marks the next
process as Running .

To determine if a process is ready to execute, the scheduler should call the
process.is_ready() method, defined in kern/src/process/process.rs . The method returns true

if either the state is Ready or if an event being waited on has occurred.

The scheduler should be invoked every TICK microseconds. Timer interrupts, set up in the
previous subphase, will be one of the primary sources of a scheduling change. The
GlobalScheduler type provides thread-safe method switch() as well as wrappers around the
add() and kill() methods of Scheduler . switch() method first gets the lock and schedules

out the current process. Then, it repeatedly tries to switch to a next process. If switch_to()

method fails to find a next process to switch to, such as when all processes are in the
Waiting state, it executes wfe instruc�on to enter into a low-power state and wait un�l an

event comes without execu�ng further instruc�on.

Finally, to kill a currently running process, Scheduler::kill() method is invoked. This method
will be called by system call in the next subphase. The method internally calls
Scheduler::schedule_out() method with Dead state as a parameter to schedule out the

current process. Then, it removes the dead process from the end of the queue and drop the
dead process`s instance. Since GlobalScheduler type provides thread-safe wrappers around
the Scheduler::kill() , it is guaranteed that the dead process is the last entry of the processes
queue.

Why doesn’t the scheduler know the new state? (new-state)

The scheduler.switch() method requires the caller to pass in the new state of the current
process. This implies that the scheduler does not know what the new state of the process
should be. Why might it not?

Implementation

You’re now ready to implement the round-robin scheduler. We recommend the following
approach:

1. Implement the Process::is_ready() method in kernel/src/process/process.rs .

The mem::replace() func�on will prove useful here. Please note that the Waiting state
contains a func�on to check if the event being waited on has occurred. Only if it
returns true , Waiting process can be scheduled.

2. Implement the Scheduler struct in kern/src/process/scheduler.rs .

There are five func�ons you need to implement; new() , add() , schedule_out() ,
switch_to() and kill() .

3. Ini�alize the scheduler in GlobalScheduler::initialize() .

The global scheduler should be created and ini�alized before the first process
executes. The first process should be present in scheduler’s queue before it executes.

4. Modify the GlobalScheduler::start() .

Instead of star�ng a process from an address of a extern func�on, now make use of
switch_to func�on to start a process from the scheduling queue.

5. Invoke the scheduler when a �mer interrupt occurs.

Invoke SCHEDULER.switch() on a �mer interrupt to context switch between the current
process and the next process.

Test your scheduler by adding more than one process in GlobalScheduler::initialize() . You’ll
need to allocate new processes and set up their trap frames appropriately. You’ll likely want
to create a new extern func�on for each new process so that you can differen�ate between
them. Ensure that you add the processes to the scheduler’s queue in the correct order.

When you are finished, you should see a different process execute every TICK microseconds.
You should be able to interact with each process normally between �mer interrupts. When
everything works as you expect, proceed to the next subphase.

 Overflow

Don’t overflow when genera�ng a process ID!

 Unsafe

You should not use unsafe to implement any of these rou�nes!

https://doc.rust-lang.org/std/mem/fn.replace.html

 Hint

Use mem::replace() to get an owned version of the process’s state .

Why is it correct to wait for events when no process is ready? (wfe)

Using the wfe instruc�on to wait when no process is ready means that the CPU stalls
un�l an event arrives. If no event arrives a�er a wfe is executed, scheduling never
resumes. Why is this the correct behavior?

 Hint

Think about the scenarios in which a process is in the wai�ng state.

 Note about wfe

When there are no processes ready to be executed, the processor will go into Wait-For-
Event wfe state. Event != interrupt in this context. Meaning that, when our processor
goes into wfe , it will not be waken up by our �mer interrupt, and so the scheduling will
not resume. If you wish to have the processor wai�ng for interrupts instead, change wfe

instruc�on to wfi instruc�on.

Subphase E: Sleep

In this subphase, you will implement the sleep system call and shell command. You will be
working primarily in kern/src/shell.rs and kern/src/traps .

System Calls

A system call is nothing more than a par�cular kind of excep�on. When the svc #n

instruc�on is executed, a synchronous excep�on with syndrome Svc(n) will be generated
corresponding to system call n . This is similar to how brk #n generates a Brk(n) excep�on
except that the preferred link address is the instruc�on a�er the svc instruc�on instead of
the instruc�on itself. System calls are the mechanism that user processes use to request
services from the opera�ng system that they would otherwise have insufficient permissions
to carry out.

A typical opera�ng system exposes 100s of system calls ranging from file system opera�ons
to ge�ng informa�on about the underlying hardware. In this subphase you will implement
the sleep system call. The sleep system call asks the scheduler not to schedule the process
for some amount of �me. In other words, it asks the opera�ng system to put the process to
sleep.

https://doc.rust-lang.org/std/mem/fn.replace.html

Syscall Convention

Just as we need a conven�on for func�on calls, we require a conven�on for system calls. Our
opera�ng system will adopt a modified version of the system call conven�on used by other
Unix-based opera�ng systems. The rules are:

System call n is invoked with svc #n .
Up to 7 parameters can be passed to a system call in registers x0 … x6 .
Up to 7 parameters can be returned from a system call in registers x0 … x6 .
Register x7 is used to indicate an error. See lib/kernel_api/src/lib.rs for possible values.

If x7 is 1 , there was no error.
If x7 is 0 , unknown error has occurred.
If x7 is any other value, it represents an error code specific to the system call.

All other registers and program state are preserved by the kernel.

As such, to invoke an imaginary system call 7 that takes two parameters, a u32 and a u64 ,
and returns two values, two u64 s, we might write the following using Rust’s inline assembly

fn syscall_7(a: u32, b: u64) -> Result<(u64, u64), Error> {
 let ecode: u64;
 let result_one: u64;
 let result_two: u64;
 unsafe {
 asm!("mov w0, $3
 mov x1, $4
 svc 7
 mov $0, x0
 mov $1, x1
 mov $2, x7"
 : "=r"(result_one), "=r"(result_two), "=r"(ecode)
 : "r"(a), "r"(b)
 : "x0", "x1", "x7")
 }

 let e = OsError::from(ecode);
 if let OsError::Ok = e {
 Ok((result_one, result_two))
 }
 else {
 Err(e)
 }
}

No�ce that the wrapper around the system call checks the error value before returning the
result value. You can find pre-defined system call number and enum of OsError in
lib/kernel-api/src/lib.rs .

Why do we use a separate register to pass the error value? (syscall-error)

https://doc.rust-lang.org/unstable-book/library-features/asm.html

Most Unix opera�ng systems, including Linux, overload the first result register (x0 , in our
case) as the error value register. In these conven�ons, nega�ve values with a certain range
represent error codes; all other values are interpreted as successful return values. What is
the advantage to the approach that we have taken? What is the disadvantage?

Sleep Syscall

The sleep system call will be system call number 1 in our opera�ng system. The call takes
one parameter: a u32 corresponding to the number of milliseconds that the calling process
should be suspended for. Besides the possible error value, it returns one parameter: a u32

corresponding to the number of milliseconds that elapsed between the process’s ini�al
request to sleep and the process being woken up. Its pseudocode signature would be:

fn sleep(t: u32) -> u32

When does the elapsed �me differ from the requested �me? (sleep-elapsed)

In which situa�ons, if any, will the return value from sleep differ from the input value? In
which situa�ons, if any, will they be iden�cal? What do you think the rela�ve probability
of each case is?

Implementation

Implement the sleep system call now. Start by modifying your handle_exception func�on in
kern/src/traps.rs so that it recognizes system call excep�ons and forwards them to the
handle_syscall func�on in kern/src/traps/syscalls.rs .

Then implement the handle_syscall func�on. The func�on should recognize the sleep

system call and calls its handler func�on sys_sleep() . Inside the sys_sleep() , modify the
currently execu�ng process as required. You will likely need to create a Box<FnMut> using a
closure to complete your implementa�on. This should look as follows:

let boxed_fnmut = Box::new(move |p| {
 // use `p`
});

You can read more about closures in TRPLv2.

Finally, add a sleep <ms> command to your shell that invokes the sleep system call, passing in
ms milliseconds as the sleep �me.

https://doc.rust-lang.org/book/ch13-01-closures.html

Test your implementa�on by calling sleep in user-level shells. Ensure that a process is not
scheduled while it is sleeping. All other processes should con�nue to be scheduled correctly.
Then, ensure that no process is scheduled if all processes are sleeping. Once your
implementa�on works as you expect, proceed to the next subphase.

 Hint

The sleep system call handler will need to interact with the scheduler.

 Hint

Recall that closures can capture values from their environment.

 Hint

We are providing kernel_api::syscall::sleep(span: Duration) func�on. Feel free to use it in
your shell to invoke sleep systemcall. System call number and error code can also be
found in kernel_api library.

 Hint

The u32 type implement FromStr.

Phase 3: Memory Management Unit

In this phase, you’ll enable the support of the memory management unit so that our system
can run mul�ple processes independently with each running in their own private virtual
memory space. You’ll start by reviewing VirtualAddr and PhysicalAddr structs and several
traits to support transla�on between addresses. Then, you’ll implement a two level page table
indexing 64KB aligned page. With this PageTable struct, you’ll implement kernel page table
and user page table. Finally, you’ll revisit code you have par�ally built in the previous phases,
such as init.rs or scheduler.rs , in order to support context switch between processes
having virtual memory space.

Subphase A: Virtual Memory

In this subphase, you’ll review VirtualAddr and PhysicalAddr structs to represent 64bit
address values under kern/src/vm/address.rs . Then, you’ll add two more registers in your
TrapFrame under kern/src/traps/frame.rs and kern/src/init/vectors.s

Why Do We Need Virtual Memory?

https://doc.rust-lang.org/std/str/trait.FromStr.html

Instead of sharing physical memory between kernel and user processes, each user process
will have its own virtual memory space. This will isolate processes from each other and
protect the kernel’s memory from untrusted processes.

By suppor�ng virtual memory space, user processes do not need any knowledge of the
physical memory space anymore. That is, processes will be unaware of the actual hardware
addresses, or about other processes’ virtual spaces that might execute at the same �me.

Because of the isola�on between virtual spaces of each process, two different processes
might use the exact same virtual address, but each will translate into two different physical
addresses.

Also, because of the isola�on between virtual and physical space, we can translate
con�guous virtual memory pages into fragmented physical memory pages. Hence, we can
u�lize fragmented pages in the physical space to form one con�guous virtual space. User
processes can write, compile, and link applica�ons to run in the virtual memory space, and
the opera�ng system will take care of mapping all memory accesses to the physical memory
addresses.

For the opera�ng system to achieve this, it needs the memory management unit, commonly
referred to as MMU, that handle all transla�ons between virtual spaces and physical space.

How To Work With The MMU?

The memory management unit is a hardware unit that makes the transla�on between virtual
space addresses and physical addresses. To make use of it, we need to enable it first, and
provide the page mapping table which it will use for transla�ons. That is, the MMU will
perform all the transla�ons, but the opera�ng system is responsible for crea�ng and
upkeeping of the page tables.

With the MMU enabled, all processor instruc�on fetch or memory access will go through the
MMU for transla�on, and so we will need to provide it with the proper page tables for both
the kernel and user space.

A consequence of turning on the MMU is that the kernel now have to be prepared to use the
virtual memory and maintain its own set of page tables. We will see how to set that up in
later parts of this phase.

Separation of Kernel And User Process

Opera�ng systems typically have a number of processes that are running concurrently. Since
each of those processes have its own virtual memory space, the opera�ng system needs to
keep track of each process transla�on table. The transla�on table of each process will contain

informa�on that maps each virtual page address into a physical page address. Since these
page tables are used for transla�on between user processes and physical addresses, they are
hence called User Page Tables.

In the same way, since now we are enabling the MMU, we need to provide a Kernel Page Table
that the MMU will use to con�nue to map the kernel addresses correctly. The MMU will also
enforce the permissions of the kernel pages stated by the kernel page table we provide.
Hence, we will have a permission isola�on between kernel memory pages and processes
memory pages.

Our ARM architecture have two registers to keep track of the page table the MMU should
use for address transla�ons: Transla�on Table Base Register TTBR0_EL1 and TTBR1_EL1 . In our
design, we will use TTBR1_EL1 to point to the User Page Table base address, and TTBR0_EL1 to
point to the Kernel Page Table base address. We will need to add both registers to the
TrapFrame for bookkeeping of each process and the kernel page tables.

Since now we have the kernel and user level using the virtual space address, we will need to
split the virtual address space, so that we have a clear address isola�on between kernel and
user addresses in the virtual space. To do so, will use addresses star�ng from
0xffff_ffff_c000_0000 for user level virtual address, and addresses star�ng from 0x0 for

kernel space virtual address.

Thus, the maximum size of the virtual memory space for user level would be 0x4000_0000 ,
which is 1GB memory. You can find these variables defined in kern/src/param.rs .

 How does the MMU know which table to use? (which-table)

Given a virtual address, the MMU will use either the user page table based at TTBR1_EL1 ,
or the kernel page table based at TTBR0_EL1 in order to correctly translate to the physical
address. But how does the MMU know which of the two tables to use for a given
address?

 Hint

We did not split the kernel and user level virtual space at arbitrary address! What
happens if we make the kernel level at the upper virtual space part? The following
reference might help: ARMv8-A Address Transla�on

Implementation

Review the VirtualAddr and PhysicalAddr in kern/src/vm/address.rs . Although they have
different name and different purpose, there is no difference in their structure, required traits
or func�ons.

https://static.docs.arm.com/100940/0100/armv8_a_address%20translation_100940_0100_en.pdf

Now add TTBR0 and TTBR1 registers to the trap frame. You need to modify
kern/src/traps/frame.rs and kern/src/init/vectors.s to do so. You should add instruc�ons to

save and restore TTBR0 and TTBR1 , just like we did with other system registers: saved in
context_save before calling handle_exception and restored in context_restore a�er returning

back. Also, you should add TTBR0 and TTBR1 in TrapFrame structs accordingly. Note that your
TrapFrame struct should exactly match the trap frame’s layout.

In addi�on, insert the following four lines a�er restoring TTBR0 and TTBR1 from the stack in
vectors.s . This code block is required to ensure that memory accesses that occur before the
dsb have completed before the comple�on of the dsb instruc�on.

dsb ishst
tlbi vmalle1
dsb ish
isb

Test that your modifica�on doesn’t affect your trap frame and context switch func�onality. If
everything s�ll works well, you can proceed to the next subphase.

Subphase B: Page Table

When the processor issues a 64-bit virtual address for an instruc�on fetch, or data access,
the memory management unit(MMU) translates the virtual address to the corresponding
physical address.

https://tc.gts3.org/cs3210/2020/spring/_images/pagetable.png

The above diagram depicts an example of virtual to physical address transla�on for a 64KB
page. This assumes a 64KB granule and 42-bit virtual address space and we are going to s�ck
to this se�ng. You could find more detail diagram with bits specified in Figure K6-13 in (ref:
K6.1.2).

Lets walk through what is happening in the diagram above. The 64-bit virtual address -shown
on the top- is split into 4 regions:

Bits [63-42] are used to decide which page table to use, the one based at TTBR0 or
TTBR1 , this is the first step of transla�on.

Bits [41-29] are used to index into the L2 table based at the chosen TTBRx . Since 13 bits
are used, this level of the page table can have 8192 entries, with each having 64-bit. We
will later discover how each bit of the 64-bits is used, for now, we will just state that bits
[47-16] of these entries are used to provide the base of the L3 page table.
Bits [28-16] are used to index into the chosen L3 page table. Since we are using 13 bits,
we can have 8192 entries for each L3 page table, with each entry being 64-bits. Out of
these 64-bits, we will use the bits [47-16] in the final physical address.
Bits [15-0] are used as a byte offset within the page addressed by bits [47-16] from L3
entry. Since we are having 64KB pages, 16 bits is enough to address each byte within.

Having known the different parts of the virtual address, lets detail the steps taken by the
MMU to perform the address transla�on:

1. If it is a user page mapping, TTBR1 is used for the base address for the first page table.
When it is a mapping for kernel or I/O peripherals, TTBR0 is used for the base address for
the first page table.

2. The page table contains 8192 64-bit page table entries, and [41:29] bits of virtual address
are used as an index to find an entry in the table.

3. Check the validity of the L2 page table entry and whether or not the requested memory
access is allowed.

4. If the entry is valid and allowed, the [47:16] bits of L2 page table entry is used to find the
address of the level 3 page table.

5. Bits [28:16] of the virtual address are used to index the level 3 page table entry.
6. Check the validity of the L3 page table entry and whether or not the requested memory

access is allowed.
7. If the entry is valid and allowed, the L3 page table entry refers to a 64KB physical page.

Bits [47:16] are taken from the level 3 page table entry and used to form bits [47:16] of a
physical address.

8. Because we have 64KB page, virtual address [15:0] is taken to form physical address
[15:0].

The number of page tables within each level is up to the opera�ng system, and how much
memory it needs to map. The fact is, if we fully u�lize this hierarchical model, we will end up
with much bigger virtual space than our need. In our design, however, we are sufficed with
only 1GB of virtual memory in the user level. Hence, for the user page table, we will have

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf

only one L2 page table, with two entries, each poin�ng to different L3 page table. Each L3
table of the two will have 8192 entries, each poin�ng to a 64KB page. So the calcula�on
becomes:

1 (L2 table) * 2 (L3 tables) * 8192 (L3 entries) * 64KB (page size) = 1GB

 How is our design different? (transla�on-control)

The figure you see above does not exactly match our design. Par�cularly, the number of
bits of TTBR select and Level 2 index are not the same in our design. Can you figure out
the number of bits we allocated for each? and how exactly did we configure the MMU to
apply our design?

 Hint

Exactly the same hint of the previous ques�on: how did we enforce the address split
between the kernel and the user virtual spaces? Where in our code did we configure
the MMU such that addresses above 0xffff_ffff_c000_0000 are for user virtual space?

Page Table Entry

The Page table entry PDF contains the specific details about L2 and L3 page table entry
including their bit loca�ons, names, and field descrip�ons. You will be referring to this
document when you implement your page table. For more details, see the (ref: D4.3)

ADDR field contains 32-bit output address. That address is used differently depending on if it
is a L2 table entry or a L3 table entry. For L2 table, the output address will be combined with
Level 3 index that is located in [28:16] bits of virtual address to point the L3 page table. For
L3 table, the output address will be the [47:16] bits of the translated physical address.

The low 10 bits of each entry represent the memory a�ributes.

VALID : Iden�fies whether the descriptor is valid. You should set the entry as valid to use
it.
TYPE : L2 entry can be interpreted as a descriptor poin�ng a block of memory or a
descriptor poin�ng next level of transla�on table (L3). Note that our L2 entries needs to
point the L3 table, while our L3 entries will point to the memory pages.
ATTR : Describes memory region a�ributes. When user page table allocates a new page,
its L3 entry should be normal memory. Likewise, when kernel page table sets L3 entries,
they should be normal memory. On the other hand, for the memory range from IO_BASE

to IO_BASE_END , they should have device-memory entries in L3 page table.
NS : We don’t consider this for our system
AP : Sets data access permission of the entry. The kernel page table should have KERN_RW

permission while the user page table should have USER_RW permission.

https://tc.gts3.org/cs3210/2020/spring/r/pagetable-entry.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf

SH : Shareability field. Normal memory space should set their entries as inner shareable
while device memory should set theirs as outer shareable.
AF : Should be set when first accessed. Make sure you set this bit whenever you make a
page table entry; in our implementa�on, we will assume all pages are being used.

Now open the lib/aarch64/src/vmsa.rs file and review the pre-defined a�ributes, RawL2Entry

bits and RawL3Entry bits. You can find defbit! macro defined in lib/aarch64/src/macros.rs

file. Match your understanding with the library codes and learn how to use methods
implemented for each entry.

Our OS Memory Space Layout

Now that you have knowledge about the small details of the MMU and the page tables. It is
�me to discuss how we are designing our opera�ng system memory layout.

As a quick recap, in the virtual space, the kernel addresses will start from virtual address 0x0 ,
while the user addresses will start from virtual address 0xffff_ffff_c000_0000 . This is how we
divided the virtual space, but what about the physical space?

We will design our opera�ng system as follows: Once our kernel start running, we will create
the kernel page table, and map all available physical memory to the kernel virtual memory.
That is, we will use our memory_map func�on, that we implemented in Lab 3, to give us the
end of the available physical memory. Then, we will start at address 0x0 in both address
spaces, virtual and physical, and insert a page table entry for every page un�l the end limit we
got from memory_map . This way, the kernel can con�nue to use the physical addresses we have
been using without change, and we made the MMU happy by providing the table it needs!

We will also do the same for memory mapped IO devices. We will map the region between
IO_BASE and IO_BASE_END to the same respec�ve virtual address for every page. That way, we

can con�nue to use the IO devices with the same addresses we have. You may find the
defini�on of IO_BASE and IO_BASE_END in pi/src/common.rs .

Note that since our rpi memory is 1GB, we can design the kernel page table exactly as we did
in the user page table: One L2 table and two L3 tables.

But what about the user virtual memory? If we map all physical memory to the kernel virtual
memory then what will we map to the user virtual space?

Actually, mapping the pages to the kernel virtual memory does NOT mean they are allocated!
We are only crea�ng this mapping so that the kernel can manage the physical memory using
the virtual space.

So now, how does the memory alloca�on look like? If you remember, our allocator is
managing the memory given back by memory_map , which uses a physical address.

In case the kernel needs to allocate memory, we can con�nue to use the allocator as usual,
since the physical address space the allocator uses and the kernel’s virtual space are iden�cal;
thanks to the kernel page table we built in the beginning.

In case the user needs to allocate memory, we will use our allocator too, but then we will
need to insert a proper page table entry in that context’s user page table, so that the
transla�on happen properly.

With this design, the allocator ensures that the kernel and the user have their demand of
memory, without the kernel accidentally using a page that is allocated to the user. The MMU
ensures that the user does not have access to the kernel pages since we are flagging the
kernel permission for kernel pages, and we do not need to change any of the physical
addresses we have been using in the kernel since the virtual address for the kernel is no
different, pre�y cool!

Implementation

You’re now ready to implement a two level page table with 64KB granule star�ng at level 2.
You’ll be primarily working in kern/src/vm/pagetable.rs , kern/src/process.rs and
kern/src/vm.rs .

We recommend the following approach:

1. Implement L2PageTable , L3Entry and L3PageTable struct.

Feel free to add useful traits to convert {usize, u64, i32,.. } types to PhysicalAddr and
VirtualAddr , or some func�ons to convert PhysicalAddr and VirtualAddr to {usize,

u64, *mut u8,…} such as as_usize() , as_u64() , and as_mut_ptr() .

2. Implement PageTable struct.

There are six methods needs to be implemented for PageTable . The requirements for
each methods are specified in doc-comments within a skeleton code. Note that we are
suppor�ng virtual memory space up to 1GB memory. Thus, two L3 page table is
enough to cover the space and L2 page table should have entries no more than 2.
Whenever you make a page table entry, please make sure you set the proper bits
value.

3. Implement IntoIterator for &PageTable .

The returned iterator should iterates from the first entry of the first L3 page table and
moves on to the second L3 page table.

 Hint

The chain() method will be useful.

https://doc.rust-lang.org/core/iter/trait.Iterator.html#method.chain

4. Implement KernPageTable::new() method.

KernPageTable is a struct that internally has smart pointer of PageTable . First, create a
PageTable with proper permission for the kernel page table.

Then, load all the memory space residing in SDRAM star�ng from 0x0000_0000. You
can get ending address by calling allocator::memory_map() func�on implemented in the
lab3. Note that this space is normal memory that is internally shared. Set proper
se�ngs for L3 entries and set those entries in the page table.

Then, set L3 entries for I/O memory range from IO_BASE to IO_BASE_END as device
memory. The range variables are defined in pi/src/common.rs . The entries should have
same se�ngs with the one for normal memory space, except that its a�ribute should
be set as device memory and it is outer sharable. Also, make sure to set the proper bits
value for each page table entry you create.

Note that we are using 64KB page granularity for both cases.

5. Implement UserPageTable struct.

For the user page table, you don’t need to set any pages into the pagetable in crea�on
�me.

When alloc() func�on is called, allocates a 64KB page, creates an L3 entry with
proper se�ngs, set the physical address of the allocated page to L3 entry’s ADDR field,
and set the entry in the page table. Before looking up the page table with virtual
address, note that the virtual address for user process starts from USER_IMG_BASE ,
which is 0xffff_ffff_c000_0000 . You have to subtract this base address from the virtual
address to lookup the page table and set entries. Make sure to set the proper bits
value for each page table entry you create.

6. Implement Drop traits for UserPageTable .

To implement Drop traits, iterate the internal pagetable and dealloc() each entry that
exists.

7. Let a process struct have a UserPageTable .

You can simple do this by uncommen�ng pub vmap: Box<UserPageTable>, line within the
Process struct in process.rs . Modify Process::new() method to return the Process

struct holding vmap .

8. Finally, implement VMManager in kern/src/vm.rs .

The virtual memory manager is a thread-safe wrapper around a kernel page table.
Before its first use, it must be ini�alized by calling initialize() which internally calls
setup() method. Se�ng up the virtual machine manager includes configuring some

proper values to the several relevant registers.

Here is the registers used by the setup() method :

ID_AA64MMFR0_EL1 : AArch64 Memory Model Feature Register 0 (ref: D7.2.43)

Tgran64 field is used to check whether the current system support 64KB
memory transla�on granule size or not. startup() panics if it’s not supported.
PARange field is used to check the range supported for physical address.

MAIR_EL1 : Memory A�ribute Indirec�on Register (EL1) (ref: D7.2.70)

Provides the memory a�ribute encoding corresponding to the possible
A�rIndx.

TCR_EL1 : Transla�on Control Register (ref: D7.2.91)

It controls other memory management features at EL1 and EL0. (guide: 12.2)

TTBR0_EL1 and TTBR1_EL1

Specifies the base address of the transla�on table.

SCTLR_EL1 : System Control Register (ref: D7.2.88)

Provides top level control of the system including memory system.

Now complete the implementa�on for VMManager by wri�ng codes for unimplemented
methods.

 Hint

Instead of using raw bit and bit opera�on, use wrapper func�ons and variables from
aarch64 library to prevent poten�al typos and mistakes.

 Hint

We also have interface for registers in aarch64 library.

Why do we need Deref and DerefMut traits? (Deref)

In pagetable.rs , we have Deref and DerefMut traits for KernPageTable and UserPageTable .
What are the roles of these traits and why do we need them?

https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-A-Programmer-Guide.pdf
https://tc.gts3.org/cs3210/2020/spring/r/ARMv8-Reference-Manual.pdf

We do not support page access rights permissions

Even though in the implementa�on of UserPageTable::alloc you might see _perm for
memory page access rights permission (i.e. RW pages or RWX), we do not actually use it.
It is there just as a stub for future support of this feature. Note, however, that we do
support MMU page permissions isola�ng the kernel and user space pages. We do this by
se�ng the proper values in the page table entries, AP .

Testing Virtual Memory

First, we’ll add one line of code in kern/src/main.rs . Call initialize() method for VMM before
calling scheduler ini�aliza�on. Thus, your kmain() will now have six lines like below:

unsafe fn kmain() -> ! {
 ALLOCATOR.initialize();
 FILESYSTEM.initialize();
 IRQ.initialize();
 VMM.initialize();
 SCHEDULER.initialize();
 SCHEDULER.start();
}

As your kernel now enables virtual memory, your process should have a user page table.
We’re going to implement several user programs as well as loading those programs as a
process in the next phase. Before moving to the next phase, let’s simply test whether your
user process can be run with user page table.

In initialize() func�on in kern/src/process/scheduler.rs . We can start using the virtual
address instead of the physical address.

Since we do not have any process in the virtual space, yet. We have provided a test func�on
test_phase_3 . This func�on, given a process, will allocate a new page at address
USER_IMG_BASE in the process’s virtual space, and will copy the func�on test_user_process to

that page. So that now if we set elr to USER_IMG_BASE , it should run test_user_process .

Set ttbr0 and ttbr1 appropriately for each process. ttbr0 should have the base address of
the kernel page table while ttbr1 should have the base address for the user page table.
Then, call test_phase_3() func�on for each process, so that they have something to execute
at USER_IMG_BASE , and set elr to USER_IMG_BASE . test_user_process is a simple func�on that
invokes a sleep system call. Finally, add the processes to the scheduler queue.

If everything works well, you can see your each process sleeps for 10 seconds falling to the
Waiting status right a�er it is scheduled. You may want to print �mer interrupts and

scheduling queue to check it.

Phase 4: Programs In The Disk

In this phase, you will further modify Process structure implementa�on to load programs
binaries from the filesystem image to create a process.

Subphase A: Load A Program

In the previous phase, we generated user-level processes using extern func�on and started
them by passing the address of the extern func�on to the ELR register of trap frame.
However, implemen�ng all the user programs in the kernel code is not prac�cal nor safe.
Instead, we’ll implement features to load programs wri�en by the user outside of the kernel,
compiled and stored in the disk as binary.

In this subphase, you will be working in kern/src/process/process.rs .

To convert a program binary from the disk to a Process struct, you need the following steps:

1. Open the binary file, and create a process object.
2. Allocate a 64KB page within the process’s user page table for user process’s stack. This

page should have read and write permission.
3. Allocate a 64KB page within the process’s user page table with virtual address star�ng

from USER_IMG_BASE . This page should have read, write and execute permissions. Start
reading the binary file and store it in the allocated page. Keep alloca�ng addi�onal pages
un�l you are done reading the whole binary file.

4. Set the trap frame for the process with the proper values.

Implementation

First, complete the helper func�ons. There are four func�ons returning VirtualAddr in
kern/src/process/process.rs . You can find relevant constant variables defined in
kern/src/param.rs

get_max_va() : Returns the highest virtual address for user process.
get_image_base() : Returns the base address for the user virtual memory space.
get_stack_base() : Returns the base address for the user process’s stack in the virtual

space. Since stacks grow from higher memory address to lower memory addresses, a
good stack base would be the last page in the user’s virtual space. Note that the address
should be aligned by PAGE_SIZE.
get_stack_top() : Returns the top of the user process’s stack. This will be set to the stack

pointer once the process is run. It should be the maximum stack pointer possible.
Remember, in ARM, stack pointers are 16 byte aligned.

Then, complete load() and do_load() methods.

do_load() method gets a path to the file as a parameter and returns a wrapped Process

struct. do_load needs to create a new process struct, allocate the stack in process virtual
space, opens a file at the given path and read its content into the process virtual space
star�ng at address USER_IMG_BASE .

load() method internally call do_load() method. Then, it should sets the trap frame for the
process with the proper virtual addresses in order to make the process run with user page
table. Finally, it returns the process object ready to be run.

Compiling User Programs

Now that your opera�ng systems support loading and running user programs for the file
system, we should give it a run. But first, we need to compile the user programs to our OS
needs.

In commodity OSes, like Linux, executables are usually compiled into an executable file
format such as elf . The process of loading user programs into memory and ge�ng them to
run is usually more complicated than what we do in our opera�ng system. You may read
about how it is done in the Linux kernel How programs get run: ELF binaries.

For our opera�ng system, however, we do not have an elf interpreter, and so we will need to
compile our programs into a plain binary file that expect to be loaded at address
USER_IMG_BASE .

We have provided two user programs ready for you to compile at user directory. fib

actually needs the system call write which we have not implemented yet. So, we will base
our example on sleep , which have the same behavior as the test_user_process func�on you
have seen before.

To compile sleep , run make at user/sleep . This will generate two files at user/sleep/build :
sleep.bin and sleep.elf .

sleep.elf is the elf version of the sleep program. Since we do not have an elf interpreter,
we cannot use it in our opera�ng system. Instead, we will use sleep.bin , which is literally just
a stream of the executable bytes.

Once you have compiled sleep , copy sleep.bin into the SD card, and move on to the tes�ng
phase.

Test your implementation

We provides two user programs fib and sleep under user directory. As the name
suggests, sleep is a program that calls the sleep system call. It has the exact same codes as
the previous test_user_process() func�on. The behaviour of fib is also very simple. It just

https://lwn.net/Articles/631631/

calculates 40th fibonacci number with recursive fib() func�on. You can find the source
code in user/fib/src/main.rs .

Then, revisit the kern/src/process/scheduler.rs . Now, we don’t have to manually set the
registers and add the processes created from an extern func�on, but we can load mul�ple
programs from our disk using Process::load func�on. Load four sleep programs and add
them in the scheduling queue in initialize() method.

Finally, modify inline assembly in GlobalScheduler::start() func�on. Instead of the address of
_start func�on, calculate the address of the next page and store it to the sp register. This

way, we will have a clean page for the stack when we return to the kernel level. Before calling
eret , don’t forget to clean any register that may leak informa�on or addresses from the

kernel.

A�er boot up, if the four sleep programs starts, you can con�nue to the next subphase.
Note that you can’t test fib program yet because we haven’t implemented write system
call. We will implement it and some more system calls in the next subphase.

If you wish to use qemu , and need a file system image that have the user programs inside of
it, you can use user/build.sh script. This script will generates fs.img that contains compiled
binary of sleep and fib program.

Subphase B: User Processes

In this subphase, we will extend our system call library to make it more useful to user
programs. We will also write and compile an example user program in Rust, which should be
run on top of our opera�ng system. Finally, we will apply changes in our system call handler
to add the new system calls. You will be working primarily in lib/kernel_api/src/syscall.rs

and kern/src/traps/syscall.rs .

User Programs

First, we will build the kernel api library for our opera�ng system. This library will be
imported by user level programs to ini�ate a system call to our opera�ng system.

Start by implemen�ng func�ons in lib/kernel_api/src/syscall.rs . Each func�on should be
implemented to invoke system call corresponding to the name of the func�on.

To give you an example, lets walk through how does system call are handled in our system.
The user program import the library kernel_api , and use its func�ons. The func�ons in
kernel_api will implement the required assembly to issue the system call to the opera�ng

system, with the appropriate system call number and arguments. This will trap into the
opera�ng system handle_exception , which will forward the request to handle_syscall .

Similarly, handle_syscall will categorize the request based on the syscall number, and forward
it to the responsible handler. The handler will execute the required func�onality of the
system call, and return back through the chain of calls to the user level.

Start implemen�ng the library func�ons at lib/kernel_api/src/syscall.rs . All you have to do
in these func�on is to prepare the argument for the required system call, and issue the svc

instruc�on. We have provided sleep as an example. The system call numbers are defined in
lib/kernel_api/src/lib.rs . Please refer to lib/kernel_api/src/lib.rs to find pre-defined

variables for system call number.

Then, for each system call you implemented, make sure you complete the full chain of
handling it just as we described above, i.e. add it to handle_syscall and write the respec�ve
sys_{SYSCALL} func�on in kern/src/traps/syscall.rs .

We recommend you to start from implemen�ng write system call. When you are done
implemen�ng it, you can now run mul�ple fib programs with the same way you did for the
sleep program.

If all is well, you can see fib processes running and their output is printed.

Note that you have to recompile the user programs whenever you are making changes to
kernel_api .

When you are done with implemen�ng every func�ons in the kernel_api user library as well
as its system call handler in the kernel, try to call and test every system call in the fib

program. Also, if you feel adventurous, write your own programs. You can copy the same
build system from fib and use it in your program to generate a working binary.

 Check your code before submit!

Before submi�ng your code, please change your TICK variable in kern/src/param.rs to 10
ms. In addi�on, please check you are not leaving any system calls nor excep�ons you used
for debugging. Your main should have all 6 lines: 5 initialize() calls and 1 start() call.

Submission

Once you’ve completed the tasks above, you’re done and ready to submit! Congratula�ons!

You can call make check in tut/4-spawn directory to check if you’ve answered every ques�on.

Once you’ve completed the tasks above, you’re done and ready to submit! Ensure you’ve
commi�ed your changes. Any uncommi�ed changes will not be visible to us, thus
unconsidered for grading.

When you’re ready, push a commit to your GitHub repository with a tag named lab4-done .

submit lab4
$ git tag lab4-done
$ git push --tags

