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Lab 3: FAT32 Filesystem

Handed out: Tuesday, February 11, 2020
Due: Monday, March 2, 2020

Introduction

In this assignment, you will enable the use of Rust’s collec�ons module ( Vec , String ,
HashMap , and friends) by wri�ng a memory allocator, implement the FAT32 file system,

implement a Rust interface for a driver for the Raspberry Pi’s EMMC (SD card controller), and
extend your shell with cd , ls , pwd , and cat , commands.

Phase 0: Getting Started

Fetch the update for lab 3 from our git repository to your development machine.

$ git fetch skeleton 
$ git merge skeleton/lab3 

This is the directory structure of our repository. The directories you will be working on this
assignment are marked with *.

. 
├── bin : common binaries/utilities 
├── doc : reference documents 
├── ext : external files (e.g., resources for testing) 
├── tut : tutorial/practices 
│    ├── 0-rustlings 
│    ├── 1-blinky 
│    ├── 2-shell 
│    └── 3-fs : questions for lab3 * 
├── boot : bootloader 
├── kern : the main os kernel * 
└── lib  : required libraries 
     ├── fat32 * 
     ├── pi * 
     ├── shim 
     ├── stack-vec 
     ├── ttywrite 
     ├── volatile 
     └── xmodem 

https://tc.gts3.org/cs3210/2020/spring/index.html
https://tc.gts3.org/cs3210/2020/spring/lab.html
https://doc.rust-lang.org/alloc/collections/index.html


You may need to resolve conflicts before con�nuing. For example, if you see a message that
looks like:

Auto-merging kern/src/main.rs 
CONFLICT (content): Merge conflict in kern/src/main.rs 
Automatic merge failed; fix conflicts and then commit the result. 

You will need to manually modify the main.rs  file to resolve the conflict. Ensure you keep all
of your changes from lab 2. Once all conflicts are resolved, add the resolved files with
git add  and commit. For more informa�on on resolving merge conflicts, see this tutorial on

githowto.com.

make transmit  command

Since you’ve finished wri�ng the bootloader in the previous lab, you are ready to use the
command make transmit  that builds the kernel binary and calls ttywrite  to send it to the
Raspberry Pi for the bootloader to load. As a result, assuming the bootloader is installed as
kernel8.img , you will be able to test new binaries simply by rese�ng your Raspberry Pi and

running make transmit .

You should have installed ttywrite  u�lity in the previous lab. If you didn’t for some reason,
install it now by running cargo install --path .  in the lib/ttywrite  directory. Ensure that the
u�lity was properly installed by running ttywrite --help .

The make transmit  target is configured to write to /dev/ttyUSB0  by default. If your TTY device
differs, modify the TTY_PATH  declara�on on line 7 of kern/Makefile  appropriately.

 Add your user to dialout group

If you are experiencing a permission issue when accessing the TTY, please try adding your
user to the dialout group.

sudo usermod -a -G dialout $USER 
sudo reboot 

 Compila�on errors a�er merging lab3

We provide a template code for the final phase of lab3, which contains lots of
uncompleted code. When you try to compile your code while working on this lab, you will
see the compiler complains about some of the code you just merged. You can comment

https://githowto.com/resolving_conflicts


the offensive lines of the code un�l we fix them later. For instance, you may want to
disable the file system component when working in phase 1. Make sure you only
comment out minimum amount of the code!

 The ALLOCATOR.initialize()  call panics!

Your shell should con�nue to func�on as before. If you test the make install  target now,
however, you’ll likely find that you shell appears to no longer work. The likely culprit is an
ALLOCATOR.initialize()  call preceding your shell()  call. Because there is no memory

allocator yet, the call will lead to a panic!() , hal�ng your system without warning. We’ll
fix this soon. Feel free to comment out the line temporarily to ensure everything is
working as expected.

Phase 1: Memory Lane

In this phase you will implement two memory allocators: a simple bump allocator and a more
fully-featured bin allocator. These will immediately enable the use of heap alloca�ng
structures such as Vec , Box , and String . To determine the available memory on the system
for alloca�on, you will read ARM tags (ATAGS). You will also implement the panic handler to
properly handle panic!  calls.

Subphase A: Panic!

In this subphase you will implement the panic handler. You will be working in
kern/src/init/panic.rs .

Error Handling in Rust

Rust has two major categories of errors: recoverable and unrecoverable. Rust represents
recoverable errors with Result<T, E>  type. On the other hand, when a Rust program
encounters an unrecoverable error, it stops the program execu�on altogether. This behavior
is called panic!  in Rust terminology.

When targe�ng standard opera�ng systems, the Rust compiler will generate a program that
prints the backtrace and sets the process exit code on panic. However, when the Rust
compiler is instructed to compile a Rust program for a target without opera�ng system
support, such as we do for our Raspberry Pi, the compiler requires the manual
implementa�on of the panic handler.

A panic handler is a func�on that is called when a panic!  occurs. It has a type of
fn panic(info: PanicInfo) -> ! , which means it takes a PanicInfo as an argument and never

returns. PanicInfo  struct contains the informa�on of the file name, line number, and column
where the panic!  occurred.

http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html#d0e428
https://doc.rust-lang.org/core/panic/struct.PanicInfo.html


We’ve provided the panic handler that loops indefinitely in kern/src/init/panic.rs . You will
extend this panic  implementa�on so that it logs useful informa�on to the console.

Implement the panic handler

Implement the panic  func�on now. Your implementa�on should print the passed in
informa�on to the console and then allow the loop  already in place to run. You’re free to
implement the func�on as you like. As an example, our implementa�on takes inspira�on from
Linux kernel oops messages:

            ( 
       (      )     ) 
         )   (    ( 
        (          ` 
    .-""^"""^""^"""^""-. 
  (//\\//\\//\\//\\//\\//) 
   ~\^^^^^^^^^^^^^^^^^^/~ 
     `================` 
 
    The pi is overdone. 
 
---------- PANIC ---------- 
 
FILE: src/kmain.rs 
LINE: 40 
COL: 5 
 
index out of bounds: the len is 3 but the index is 4 

Test your new panic  implementa�on by having your kernel panic. Recall that you can use
the new make install  target to compile and send the kernel to your Raspberry Pi. Note that
the ALLOCATOR.initialize()  call already panic! s, so you shouldn’t need to make any changes.
Ensure this func�on is called before your shell() .

Then, try making your kernel panic in other ways: a rogue unwrap() , an explicit panic!() , or
an unreachable!() : ensure they all work as expected. When you’re sa�sfied with your
implementa�on, con�nue to next the subphase.

Subphase B: ATAGS

In this subphase, you will implement an iterator over the ARM tags (ATAGS) loaded by the
Raspberry Pi’s firmware. You will use your iterator to find the ATAG that specifies how much
memory is available on the system. You will be working in the lib/pi/src/atags  directory and
kern/src/allocator.rs .

ARM Tags

https://en.wikipedia.org/wiki/Linux_kernel_oops


ATAGS, or ARM tags, are a mechanism used by ARM bootloaders and firmware to pass
informa�on about the system to the kernel. Linux, for example, can use ATAGS when
configured for the ARM architecture.

The Raspberry Pi places an array of ATAG structures at address 0x100. This is the structure
of ATAGS, in Rust syntax:

#[repr(C)] 
struct Atag { 
    dwords: u32, 
    tag: u32, 
    kind: Kind 
} 

Each ATAG begins with an 8 byte header, dwords  and tag . The dwords  field specifies the
size of the complete ATAG in double words (32-bit words) and includes the header. Thus the
minimum size is 2 . The tag  field specifies the type of the ATAG. There are 10 different
types of specified tags, all documented in the ATAGS reference. The Raspberry Pi only makes
use of four. These are documented below:

The type of tag determines how the data a�er the header should be interpreted. In our
skeleton code, the data following the header is represented as a field named kind  which is a
union of different kind of tags. Clicking on the name of the tag in the table above directs you
to the reference for that par�cular tag which includes the layout of the tag’s data. The MEM

tag data, for instance, is structured as below:

struct Mem { 
    size: u32, 
    start: u32 
} 

Name Type ( tag ) Size Descrip�on

CORE 0x54410001 5 or 2 if empty First tag used to start list

NONE 0x00000000 2 Empty tag used to end list

MEM 0x54410002 4 Describes a physical area of memory

CMDLINE 0x54410009 variable Command line to pass to kernel

http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html#d0e428
http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html#d0e428
http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html#ATAG_CORE
http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html#ATAG_NONE
http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html#ATAG_MEM
http://www.simtec.co.uk/products/SWLINUX/files/booting_article.html#ATAG_CMDLINE


Tags are laid out sequen�ally in memory with zero padding between each tag. The first tag is
specified to be a CORE  tag while the final tag is indicated by the NONE  tag. Other tags can
appear in any order. The dwords  field is used to determine the address of the adjacent ATAG.
The diagram below depicts the general layout.

core tag 1 tag 2 tag n none

Unions & Safety

The raw ATAG data structures are declared in lib/pi/src/atags/raw.rs . The main declara�on,
copied below, makes use of a Rust union . Rust’s unions are iden�cal to C unions: they define
a structure where all fields share common storage.

pub struct Atag { 
    dwords: u32, 
    tag: u32, 
    kind: Kind 
} 
 
pub union Kind { 
    core: Core, 
    mem: Mem, 
    cmd: Cmd 
} 

In effect, unions allow memory to be cast into arbitrary structures without regard for whether
the cast is correct. As a result, accessing union fields in Rust is unsafe .

We’ve already handled most of the unsafe  in the atags  module for you, so you don’t need
to worry about handling unions yourself. Nonetheless, exposing unions to end-users of our
pi  library is a bad idea. Because of this, we’ve declared a second Atag  structure in
lib/pi/src/atags/atag.rs . This structure is en�rely safe to use and access. This is the structure

that the pi  library will expose. When you finish the implementa�on of the atag  module
later in this subphase, you’ll write conversions from the raw  structures to the safe structures.

Why is it a bad idea to expose unions to end-users? (enduser-unsafe)

We’re going through a lot of effort to expose a safe interface to unsafe data structures.
You’ll see this over and over again in Rust, with the standard library as a prime example.
What benefit is there to exposing safe interfaces to unsafe structures or opera�ons in
Rust? Could we yield the same benefits in a language like C?

Command Line Arguments



The CMDLINE  tag deserves special a�en�on. Its declara�on is:

struct Cmd { 
    /// The first byte of the command line string. 
    cmd: u8 
} 

As indicated by the comment, the cmd  field holds the first byte of the command line string. In
other words, &cmd  is a pointer to a null-terminated, C-like string. The safe version of the Cmd

tag is Cmd(&'static str) . When you write the conversion from the raw  to safe version of the
Cmd  tag, you’ll need to determine the size of the C-like string by searching for the null

terminator in the string. You’ll then need to cast the address and size into a slice using
slice::from_raw_parts()  and finally cast the slice into a string using str::from_utf8()  or
str::from_utf8_unchecked() . You used both of these func�ons before in lab 2.

Implement atags

You’re ready to implement the atags  module in lib/pi/src/atags . Start by implemen�ng the
raw::Atag::next()  method in atags/raw.rs . The method determines the address of the ATAG

following self  and returns a reference to it. You’ll need to use unsafe  in your
implementa�on. Then implement the helper methods and conversion traits from raw
structures to safe structures in atags/atag.rs . You should only need to use unsafe  when
implemen�ng From<&'a raw::Cmd> for Atag . Finally, finish the implementa�on of the Iterator

trait for Atags  in atags/mod.rs . This requires no unsafe .

 Hint

You can convert from x: &T  to *const u32  using x as *const T as *const u32 .

 Hint

You can convert from x: *const T  to &T  using &*x . However, this conversion is
extremely unsafe. Make sure that you don’t violate the alias rule of Rust references.

 Hint

You can perform pointer arithme�c with add(), sub(), or offset().

Testing atags

Test your implementa�on by running cargo test  command in lib/pi  directory. Then, test
your ATAGS implementa�on with the RPi board by itera�ng over all of the ATAGS and debug
prin�ng them to your console in kern/src/main.rs . You should see at least one of each of the

https://doc.rust-lang.org/std/primitive.pointer.html#method.add
https://doc.rust-lang.org/std/primitive.pointer.html#method.sub
https://doc.rust-lang.org/std/primitive.pointer.html#method.offset


three non- NONE  tags. Verify that the value of each ATAG matches your expecta�ons. Once
your implementa�on performs as expected, proceed to the next subphase.

 Hint

The {:#?}  format specifier pre�fies the debug output of a structure.

What does the CMDLINE  ATAG contain? (atag-cmdline)

What is the value of the command line string in the CMDLINE  ATAG found on your
Raspberry Pi? What do you think the parameters control?

 How much memory is reported by the MEM  tag? (atag-mem)

What is the exact start address and size of the available memory reported by the MEM

ATAG? How close is this to the Raspberry Pi’s purported 1GB of RAM?

Subphase C: Warming Up

In this subphase, we’ll set the stage to write our two memory allocators in the next
subphases. You’ll implement two u�lity func�ons, align_up  and align_down , that align
addresses to a power of two. You’ll also implement the memory_map  func�on that returns the
start and end address of the available memory on the system. Your memory_map  func�on will
be used by both memory allocators to determine the available memory for alloca�on.

Alignment

A memory address is n-byte aligned if it is a mul�ple of n . Said another way, a memory
address k  is n-byte aligned if k % n == 0 . We don’t usually need to be concerned about the
alignment of our memory addresses, but as budding system’s programmers, we do! This is
because hardware, protocols, and other external forces enjoin alignment proper�es. For
example, the ARM 32-bit architecture requires the stack pointer to be 8-byte aligned. The
AArch64 architecture, our opera�ng system’s architecture of choice, requires the stack
pointer to be 16-byte aligned; x86-64 requires the same alignment. Page addresses used for
virtual memory typically need to be 4k-byte aligned. And there are many more examples, but
it suffices to say that alignment of memory addresses is important.

In C, the alignment of a memory address returned from a libC allocator is guaranteed to be 8-
byte aligned on 32-bit systems and 16-byte aligned on 64-bit systems. Beyond this, the caller
has no control over the alignment of the returned memory address and must fend for
themselves (POSIX func�ons like posix_memalign  later corrected for this).

Why did C choose these alignments? (libc-align)



The choice to guarantee 8 or 16-byte alignment from libC’s malloc  is not without reason.
Why did libC choose these par�cular alignment guarantees?

Recall the signatures for malloc()  and free()  in C:

void *malloc(size_t size); 
 
void free(void *pointer); 

In contrast, Rust’s low-level, unsafe alloc  and dealloc  methods in GlobalAlloc  trait have
the following signatures:

// `layout.size()` is the requested size, `layout.align()` the requested alignment 
unsafe fn alloc(&self, layout: Layout) -> *mut u8; 
 
// `layout` should be the same as was used for the call that returned `ptr` 
unsafe fn dealloc(&self, ptr: *mut u8, layout: Layout) 

Note that the caller can specify the alignment with the layout argument, which is defined by
two parameters, size  and align . As a result, the onus is on the allocator, not the caller, to
return a properly aligned memory address. When you implement memory allocators in the
next phase, you’ll need to ensure that the address you return sa�sfies the condi�on specified
by the layout parameter.

The second thing to note is that the dealloc  func�on, analogous to C’s free , requires the
caller to pass in the Layout  used for the original call to alloc . As a result, the onus is on the
caller, not the allocator, to remember the requested size and alignment of an alloca�on.

 Size and alignment guarantee in Rust

In Rust, all layouts must have non-nega�ve size and a power-of-two alignment; These
condi�ons are checked when a layout is created.

Why do you think Rust split responsibili�es in this way? (onus)

In C, the allocator has fewer restric�ons on the alignment of memory addresses it returns
but must record the size of an alloca�on for later use. The inverse is true in Rust. Why do
you think Rust chose the opposite path here? What advantages does it have for the
allocator and for the caller?

Utilities: align_up  and align_down

https://doc.rust-lang.org/std/alloc/struct.Layout.html


When you implement your allocators in the next subphases, you’ll find it useful to, given a
memory address u , be able to determine the first address >=  or <=  u  that is aligned to a
power of two. The (unimplemented) align_up  and align_down  func�ons in
kernel/src/allocator/util.rs  do exactly this:

/// Align `addr` downwards to the nearest multiple of `align`. 
/// Panics if `align` is not a power of 2. 
fn align_down(addr: usize, align: usize) -> usize; 
 
/// Align `addr` upwards to the nearest multiple of `align`. 
/// Panics if `align` is not a power of 2 
/// or aligning up overflows the address. 
fn align_up(addr: usize, align: usize) -> usize; 

Implement these func�ons now. You can unit test your implementa�ons by calling make test

or cargo test  in the kernel  directory. This will run the tests in kern/src/allocator/tests.rs .
All of the align_util  unit tests should pass.

 Tes�ng

During tes�ng, calls to kprint{ln}!  become calls to print{ln}! .

Thread Safety

Memory allocators like libC’s malloc()  and the two you will soon implement are global: they
can be called by any thread at any point in �me. As such, the allocator needs to be thread
safe, and that’s why alloc()  and dealloc()  method take shared (aliasable) reference &self ,
like other synchroniza�on primi�ves such as Mutex and RwLock. Rust takes thread safety
very seriously, and so it is difficult to implement an allocator that isn’t thread-safe even if our
system doesn’t have any concurrency mechanisms like threads just yet.

The topic of thread-safe memory allocators is extensive, and many research papers have
been published on exactly this topic. To avoid a deep tangent, we’ll ignore the topic
altogether and wrap our allocator in a Mutex  ensuring that it is thread-safe by virtue of
exclusion. We’ve provided the code that will wrap your allocators in kern/src/allocator.rs .
Read through the code now. No�ce how it implements Rust’s GlobalAlloc trait; this is how
Rust knows that it is a valid allocator. An implementa�on of this trait is required to register an
instance of the struct as a #[global_allocator] , which we’ve done for you in main.rs . Once
an instance is registered via the #[global_allocator]  annota�on, we can use structures like
Vec , String , and Box  via the alloc crate and Rust will forward the alloc()  and dealloc()

calls to our registered instance.

Utility: memory_map

https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/sync/struct.RwLock.html
https://doc.rust-lang.org/beta/std/alloc/trait.GlobalAlloc.html
https://doc.rust-lang.org/alloc/index.html


The final item in the kern/src/allocator.rs  file is the memory_map  func�on. This func�on is
called by the Allocator::initialize()  method which in-turn is called in kmain() . The
initialize()  method constructs an instance of the internal imp::Allocator  structure for use

in later alloca�ons and dealloca�ons.

The memory_map  func�on is responsible for returning the start and end address of all of the
free memory on the system. Note that the amount of free memory is unlikely to be equal to
the total amount of memory on the system, the la�er of which is iden�fied by ATAGS. This is
because memory is already being used by data like the kernel’s binary. memory_map  should
take care not to mark used memory as free. To assist you with this, we’ve declared the
binary_end  variable which holds the first address a�er the kernel’s binary.

Implement the memory_map  func�on now by using your Atags  implementa�on from Subphase
B and the binary_end  variable. Ensure that the func�on returns the expected values. Then
add a call to String::from("Hi!")  (or any other alloca�ng call) and ensure that a panic!()

occurs because of an unimplemented bump allocator. If memory_map()  returns what you
expect and a call to AllocatorImpl::new()  panics because the bump allocator hasn’t been
implemented yet, proceed to the next subphase.

Subphase D: Bump Allocator

In this subphase, you will implement the simplest of allocators: the bump allocator. You will
be working in kern/src/allocator/bump.rs .

 Switching Implementa�ons

The GlobalAlloc  implementa�on for Allocator  in kernel/src/allocator.rs  simply forwards
calls to an internal AllocatorImpl  a�er taking a lock. We’ll start with the bump::Allocator

in bump.rs  and later switch to the bin::Allocator  in bin.rs .

A bump allocator works like this: on alloc , the allocator returns a current  pointer, modified
as necessary to guarantee the requested alignment, and bumps the current  pointer up by the
size of the requested alloca�on plus whatever was necessary to fulfill the alignment request.
If the allocator runs out of memory, it returns an error. On dealloc , the allocator does
nothing.

The diagram below depicts what happens to the current  pointer a�er a 1k  byte alloca�on
and a subsequent 512  byte alloca�on. Note that alignment concerns are absent in the
diagram.



start

current (initial)
endcurrent (after 1k + 512 alloc)

1k 512

current (after 1k alloc)

Your task is to implement a bump allocator in kernel/src/allocator/bump.rs . In par�cular,
implement the new() , alloc() , and dealloc()  methods of bump::Allocator . Use your
align_up  and align_down  u�lity func�ons as necessary to guarantee the proper alignment of

the returned addresses. We’ve provided unit tests that check the basic correctness of your
implementa�on. You can run them with make test  or cargo test  in the kernel  directory. You
should pass all of the allocator::bump_  unit tests.

 Ensure that you don’t perform any poten�ally overflowing opera�ons!

Use the satura�ng_add and satura�ng_sub methods as necessary to prevent arithme�c
overflow.

Once all of the unit tests pass, try alloca�ng memory in kmain()  to “see” your allocator in
ac�on. Here’s a simple test:

use alloc::vec::Vec; 
 
let mut v = Vec::new(); 
for i in 0..50 { 
    v.push(i); 
    kprintln!("{:?}", v); 
} 

Once your implementa�on works as expected, proceed to the next subphase.

What does the alloc  call chain look like? (bump-chain)

If you paused execu�on when bump::Allocator::alloc()  gets called, what would the
backtrace look like? Asked another way: explain in detail how a call like v.push(i)  leads to
a call to your bump::Allocator::alloc()  method.

Subphase E: Bin Allocator

In this subphase, you will implement a more complete allocator: the bin allocator. You will be
working in kern/src/allocator/bin.rs .

https://doc.rust-lang.org/std/primitive.usize.html#method.saturating_add
https://doc.rust-lang.org/std/primitive.usize.html#method.saturating_sub


A bin allocator segments memory alloca�ons into size classes, or bins. The specific size
classes are decided arbitrarily by the allocator. Each bin holds a linked-list of pointers to
memory of the bin’s size class. Alloca�ons are rounded up to the nearest bin: if there is an
item in the bin’s linked list, it is popped and returned. If there is no free memory in that bin,
new memory is allocated from the global pool and returned. Dealloca�on pushes an item to
the linked list in the corresponding bin.

One popular approach is to divide bins into powers of two. For example, an allocator might
choose to divide memory alloca�ons into k - 2  bins with sizes 2^n  for n  from 3  to k

( 2^3 , 2^4 , …, 2^k ). Any alloca�on or dealloca�on request for less than or equal to 2^3

bytes would be handled by the 2^3  bin, requests between 2^3  and 2^4  bytes from the
2^4  bin, and so on:

bin 0 ( 2^3  bytes): handles alloca�ons in (0, 2^3]

bin 1 ( 2^4  bytes): handles alloca�ons in (2^3, 2^4]

…
bin 29 ( 2^32  bytes): handles alloca�ons in (2^31, 2^32]

Linked List

We’ve provided an implementa�on of an intrusive linked list of memory addresses in
kern/src/allocator/linked_list.rs . We’ve also imported the LinkedList  struct in
kern/src/allocator/bin.rs .

What’s an instrusive linked list?

In an intrusive linked list, next  and previous  pointers, if any, are stored in the push ed
items themselves. An intrusive linked list requires no addi�onal memory, beyond the item,
to manage an item. On the other hand, the user must provide valid storage in the item for
these pointers.

A new, empty list is created using LinkedList::new() . A new address can be prepended to the
list using push() . The first address in the list, if any, can be removed and returned using
pop()  or returned (but not removed) using peek() :

let mut list = LinkedList::new(); 
unsafe { 
    list.push(address_1); 
    list.push(address_2); 
} 
 
assert_eq!(list.peek(), Some(address_2)); 
assert_eq!(list.pop(), Some(address_2)); 
assert_eq!(list.pop(), Some(address_1)); 
assert_eq!(list.pop(), None); 



LinkedList  exposes two iterators. The first, obtained via iter() , iterates over all of the
addresses in the list. The second, returned from iter_mut() , returns Node s that refer to each
address in the list. The value()  and pop()  methods of Node  can be used to read the value or
pop the value from the list, respec�vely.

let mut list = LinkedList::new(); 
unsafe { 
    list.push(address_1); 
    list.push(address_2); 
    list.push(address_3); 
} 
 
for node in list.iter_mut() { 
    if node.value() == address_2 { 
        node.pop(); 
    } 
} 
 
assert_eq!(list.pop(), Some(address_3)); 
assert_eq!(list.pop(), Some(address_1)); 
assert_eq!(list.pop(), None); 

Read through the code for LinkedList  now. Pay special a�en�on to the safety proper�es
required to call push()  safely. You’ll likely want to use LinkedList  to manage the bins in your
memory allocator.

Why is it convenient to use an intrusive linked list? (ll-alloc)

Using an intrusive linked list for our memory allocators turns out to be a very convenient
decision. What issues would arise if we had instead decided to use a regular, allocate-
addi�onal-memory-on-push, linked list?

Fragmentation

The concept of fragmenta�on refers to memory that is unused but unallocatable. An allocator
incurs or creates high fragmenta�on if it creates a lot of unusable memory throughout the
course of handling alloca�ons. An ideal allocator has zero fragmenta�on: it never uses more
memory than necessary to handle a request and it can always use available memory to
handle new requests. In prac�ce, this is neither desired nor achievable given other design
constraints. But striving for low fragmenta�on is a key quality of good memory allocators.

We typically define two kinds of fragmenta�on:

internal fragmenta�on

The amount of memory wasted by an allocator to due to rounding up alloca�ons. For a
bin allocator, this is the difference between a request’s alloca�on size and the size class of
the bin it is handled from.



external fragmenta�on

The amount of memory wasted by an allocator due to being unable to use free memory
for new alloca�ons. For a bin allocator, this is equivalent to the amount of free space in
every bin that can’t be used to handle an alloca�on for a larger request even though the
sum of all of the free space meets or exceeds the requested size.

Your allocator should try to keep fragmenta�on down within reason.

Implementation

Implement a bin allocator in kern/src/allocator/bin.rs . Besides being a bin-like allocator, the
design of the allocator is en�rely up to you. The allocator must be able to reuse freed
memory. The allocator must also not incur excessive internal or external fragmenta�on. Our
unit tests, which you can run with make test  to check these proper�es. Remember to change
AllocatorImpl  to bin::Allocator  in kern/src/allocator.rs  so that your bin allocator is used for

global alloca�ons.

Once your allocator passes all tests and is set as the global allocator, proceed to the next
phase.

What does your allocator look like? (bin-about)

Briefly explain the design of your allocator. In par�cular answer the following ques�ons:

Which size classes did you choose and why?
How does your allocator handle alignment?
What are the bounds on internal and external fragmenta�on for your design choices?

 How could you decrease your allocator’s fragmenta�on? (bin-frag)

Your allocator probably creates more fragmenta�on that it needs to, and that’s okay! How
could you do be�er? Sketch (only in wri�ng) two brief design ideas for improving your
allocator’s fragmenta�on.

Phase 2: 32-bit Lipids

In this phase, you will implement a read-only FAT32 file system. You will be working primarily
in the lib/fat32  directory.

Disks and File Systems



Data on a disk is managed by one or more file systems. Much like a memory allocator, a file
system is responsible for managing, alloca�ng, and dealloca�ng free disk space. Unlike the
memory managed by an allocator, the disk is persistent: barring disk failure, a write to
allocated disk space is visible at any point in the future, including a�er machine reboots.
Common file systems include EXT4 on Linux, HFS+ and APFS on macOS, and NTFS on
Windows. FAT32 is another file system that is implemented by most opera�ng systems,
including Linux, macOS, and Windows, and was used in older versions of Windows and later
versions of DOS. Its main advantage is its ubiquity: no other file system sees such cross-
pla�orm support.

To allow more than one file system to reside on a physical disk, a disk can be par��oned. Each
par��on can forma�ed for a different file system. To par��on the disk, a table is wri�en out
to a known loca�on on the disk that indicates where each par��on begins and ends and the
type of file system the par��on uses. One commonly used par��oning scheme uses a master
boot record, or MBR, that contains a table of four par��on entries, each poten�ally unused,
marking the start and size of a par��on. GPT is a more modern par��oning scheme that,
among other things, allows for more than four par��ons.

In this assignment you will be wri�ng the code to interpret an MBR par��oned disk that
includes a FAT32 par��on. This is the combina�on used by the Raspberry Pi: the SD card
uses the MBR scheme with one par��on forma�ed to FAT32.

Disk Layout

The following diagram shows the physical layout of an MBR-par��oned disk with a FAT32
file system:
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The FAT structures PDF contains the specific details about all of these structures including
their sizes, field loca�ons, and field descrip�ons. You will be referring to this document when
you implement your file system. You may also find the FAT32 design Wikipedia entry useful
while implemen�ng your file system.

Master Boot Record

The MBR is always located on sector 0 of the disk. The MBR contains four par��on entries,
each indica�ng the par��on type (the file system on the par��on), the offset in sectors of the
par��on from the start of the disk, and a boot/ac�ve indicator that dictates whether the

https://tc.gts3.org/cs3210/2020/spring/r/fat-structs.pdf
https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system


par��on is being used by a bootable system. Note that the CHS (cylinder, header, sector)
fields are typically ignored by modern implementa�ons; your should ignore these fields as
well. FAT32 par��ons have a par��on type of 0xB  or 0xC .

Extended Bios Parameter Block

The first sector of a FAT32 par��on contains the extended BIOS parameter block, or EBPB.
The EBPB itself starts with a BIOS parameter block, or BPB. Together, these structures define
the layout of the FAT file system.

One par�cularly important field in the EBPB indicates the “number of reserved sectors”. This
is an offset from the start of the FAT32 par��on, in sectors, where the FATs (described next)
can be found. Immediately a�er the last FAT is the data region which holds the data for
clusters. FATs, the data region, and clusters are explained next.

Clusters

All data stored in a FAT file system in separated into clusters. The size of a cluster is
determined by the “number of sectors per cluster” field of the EBPB. Clusters are numbered
star�ng at 2. As seen in the diagram, the data for cluster 2 is located at the start of the data
region, the data for cluster 3 is located immediately a�er cluster 2, and so on.

File Allocation Table

FAT stands for “file alloca�on table”. As the name implies, a FAT is a table (an array) of FAT
entries. In FAT32, each entry is 32-bits wide; this is where the name comes from. The size of
a complete FAT is determined by the “sectors per FAT” and “bytes per sectors” fields of the
EBPB. For redundancy, there can be more than one FAT in a FAT32 file system. The number
of FATs is determined by a field of the same name in the EBPB.

Besides entries 0 and 1, each entry in the FAT determines the status of a cluster. Entry 2
determines the status of cluster 2, entry 3 the status of cluster 3, and so on. Every cluster has
an associated FAT entry in the FAT.

FAT entries 0 and 1 are special:

Entry 0: 0xFFFFFFFN , an ID.
Entry 1: The end of chain marker.

Aside from these two entries, all other entries correspond to a cluster whose data is in the
data region. While FAT entries are physically 32-bits wide, only 28-bits are actually used; the
upper 4 bits are ignored. The value is one of:

0x?0000000 : A free, unused cluster.
0x?0000001 : Reserved.

https://en.wikipedia.org/wiki/Partition_type


0x?0000002 - 0x?FFFFFEF : A data cluster; value points to next cluster in chain.
0x?FFFFFF0 - 0x?FFFFFF6 : Reserved.
0x?FFFFFF7 : Bad sector in cluster or reserved cluster.
0x?FFFFFF8 - 0x?FFFFFFF : Last cluster in chain. Should be, but may not be, the EOC marker.

Cluster Chains

Clusters form chains, or linked lists of clusters. If a cluster is being used for data, its
corresponding FAT entry value either points to the next cluster in the chain or is the EOC
marker indica�ng it is the final cluster in the chain.

As an example, consider the diagram below which depicts a FAT with 8 entries.
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The clusters are color coded to indicate which chain they belong to. The first two entries are
the ID and EOC marker, respec�vely. Entry 2 indicates that cluster 2 is a data cluster; its
chain is 1 cluster long. Entry 3 indicates that cluster 3 is a data cluster; the next cluster in the
chain is cluster 5 followed by the final cluster in the chain, cluster 6. Similarly, clusters 7 and
5 form a chain. Cluster 8 is free and unused.

Directories and Entries

A chain of clusters makes up the data for a file or directory. Directories are special files that
map file names and associated metadata to the star�ng cluster for a file’s date. Specifically, a
directory is an array of directory entries. Each entry indicates, among other things, the name
of the entry, whether the entry is a file or directory, and its star�ng cluster.

The root directory is the only file or directory that is not linked to via a directory entry. The
star�ng cluster for the root directory is instead recorded in the EBPB. From there, the
loca�on of all other files can be determined.

For historical reasons, every physical directory entry can be interpreted in two different ways.
The a�ributes field of an entry is overloaded to indicate which way an entry should be
interpreted. An entry is either:

A regular directory entry.



A long file name entry.

Long file name (LFN) entries were added to FAT32 to allow for filenames greater than 11
characters in length. If an entry has a name greater than 11 characters in length, then its
regular directory entry is preceded by as many LFN entries as needed to store the bytes for
the entry’s name. LFN entries are not ordered physically. Instead, they contain a field that
indicates their sequence. As such, you cannot rely on the physical order of LFN entries to
determine how the individual components are joined together.

Wrap Up

Before con�nuing, cross-reference your understanding with the FAT structures PDF. Then,
answer the following ques�ons:

 How do you determine if the first sector is an MBR? (mbr-magic)

The first sector of a disk may not necessarily contain an MBR. How would you determine
if the first sector contains a valid MBR?

What is the maximum number of FAT32 clusters? (max-clusters)

The FAT32 design enjoins several file limita�ons. What is the maximum number of
clusters that a FAT32 file system can contain, and what dictates this limita�on? Would
you expect this limita�on to be the same or different in a file system named FAT16?

What is the maximum size of one file? (max-file-size)

Is there a limit to the size of a file? If so, what is the maximum size, in bytes, of a file, and
what determines it?

 Hint

Take a close look at the structure of a directory entry.

 How do you determine if an entry is an LFN? (lfn-iden�ty)

Given the bytes for a directory entry, how, precisely, do you determine whether the entry
is an LFN entry or a regular directory entry? Be specific about which bytes you read and
what their values should be.

 How would you lookup /a/b/c.txt ? (manual-lookup)

Given an EBPB, describe the series of steps you would take to find the star�ng cluster for
the file /a/b/c.txt .

https://tc.gts3.org/cs3210/2020/spring/r/fat-structs.pdf


Code Structure

Wri�ng a file system of any kind is a serious undertaking, and a read-only FAT32 file system
is no excep�on. The code that we’ve provided for you in the lib/fat32  project provides a
basic structure for implementa�on, but many of the design decisions and the majority of the
implementa�on are up to you.

We’ll describe this structure now. You should read the relevant code in the fat32/src

directory as we describe the various components and how they fit together.

File System Traits

The traits  module, rooted at traits/mod.rs , provides 7 trait declara�ons and 1 struct
declara�on. Your file system implementa�on will largely be centered on implemen�ng these
seven traits.

The single struct, Dummy , is a type that provides a dummy implementa�on of five of the seven
traits. The type is useful as a place-holder. You’ll see that we’ve used this type already in
several places in the code. You may find this type useful while you work on the assignment as
well.

You should read the code in the traits/  directory in the following order:

Read the BlockDevice  trait documenta�on in traits/block_device.rs .

The file system will be wri�en generic to the physical or virtual backing storage. In
other words, the file system will work on any device as long as the device implements
the BlockDevice  trait. When we test your file system, the BlockDevice  will generally be
backed by a file on your local file system. When your run the file system on the
Raspberry Pi, the BlockDevice  will be backed by a physical SD card and EMMC
controller.

Read the File , Dir , and Entry  traits in traits/fs.rs .

These traits define what it (minimally) means to be a file, directory, or directory entry
in the file system. You’ll no�ce that the associated types of the trait depend on each
other. For example, the Entry  trait requires its associated type File  to implement the
File  trait.

Read the FileSystem  traits in traits/fs.rs .

This trait defines what it means to be a file system and unifies the rest of the traits
through its associated types. In par�cular, it requires a File  that implements the
File  trait, a Dir  that implements the Dir  trait whose Entry  associated type is the

same as the associated type of file system’s Entry  associated type, and finally an



Entry  associated type that implements Entry  with the same File  and Dir

associated types as the file system. These constraints together ensure that there is
only one concrete File , Dir , and Entry  type.

Read the Metadata  and Timestamp  traits in traits/metadata.rs .

Every Entry  must be associated with Metadata  which allows access to details about a
file or directory. The Timestamp  trait defines the opera�ons requires by a type that
specifies a point in �me.

Cached Partition

CachedPartition  struct in vfat/cache.rs  wraps BlockDevice  and Partition  and translates
logical sectors, as specified by the EBPB, to physical sectors, as specified by the disk. We
have provided an implementa�on of a method that does exactly this: virtual_to_physical() .
You should use this method when determining which physical sectors to read from the disk.
CachedPartition  also provides a caching layer, which reduces the expensive cost of direct

access to a physical disk. The get()  and get_mut()  methods of it allow for a sector to be
referenced from the cache directly.

Actual disk cache implementa�ons in commodity opera�ng systems manage the disk cache
very smartly. They predict the disk access pa�ern and preload disk contents, and they write
the cache back to the disk if it is not accessed recently. For simplicity, our implementa�on
will not implement such features. It will hold the disk content in the memory indefinitely.

Utilities

The util.rs  file contains two declara�ons and implementa�ons of extension traits for slices
( &[T] ) and vectors ( Vec<T> ). These traits can be used to cast a vector or slice of one type
into a vector or slice of another type as long as certain condi�ons hold on the two types. For
instance, to cast from an &[u32]  to an &[u8] , you might write:

use util::SliceExt; 
 
let x: &[u32] = &[1, 2, 3, 4]; 
assert_eq!(x.len(), 4); 
 
let y: &[u8] = unsafe { x.cast() }; 
assert_eq!(y.len(), 16); 

MBR and EBPB

The MasterBootRecord  structure in mbr.rs  is responsible for reading and parsing an MBR from
a BlockDevice . Similarly, the BiosParameterBlock  structure in vfat/ebpb.rs  is responsible for
reading and parsing the BPB and EBPB of a FAT32 par��on.



Filesystem

The vfat/vfat.rs  file contains the VFat  structure, the file system itself. You’ll note that the
structure contains a CachedPartition : your implementa�on must wrap the provided
BlockDevice  in a CachedPartition .

What is VFAT?

VFAT is another file system from Microso� that is a precursor to FAT32. The name has
unfortunately become synonymous with FAT32, and we con�nue this poor tradi�on here.

The vfat/vfat.rs  file also provides VFatHandle  trait, which defines a way to share mutable
access to VFat  instance in a thread-safe way. When implemen�ng your file system, you’ll
likely need to share mutable access to the file system itself among your file and directory
structures. You’ll rely on this trait to do so. Use clone()  method for replica�ng the handle
and lock()  method for entering the cri�cal sec�on where the code can access &mut VFat .

VFat  and a few other types in our file system such as File  and Dir  are generic over
HANDLE  type parameter that implements VFatHandle  trait. This design allows the user of the

library to inject lock implementa�on by implemen�ng VFatHandle  trait on their own type. Our
kernel uses PiVFatHandle  struct which internally uses its custom Mutex  implementa�on,
while the test code uses StdVFatHandle  struct which is implemented with types in the
standard library.

VFat  is generic over VFatHandle , but VFat  doesn’t physically own VFatHandle . The
rela�onship is reverse; implementors of VFatHandle  will manage VFat  as their field. To
represent such rela�onship, zero-sized marker type PhantomData has been added to VFat .

We’ve started an implementa�on of the FileSystem  trait for &'a HANDLE  already. You’ll also
note that the from()  method of FileSystem  returns a HANDLE . Your main task will be to
complete the implementa�on of the from()  method and of the FileSystem  trait for
&'a HANDLE . This will require you to implement structures that implement the remainder of

the file system traits.

We’ve provided the following code in vfat/  to assist you with this:

error.rs

Contains an Error  enum indica�ng the possible FAT32 ini�aliza�on errors.

file.rs

Contains an incomplete File  struct with an incomplete traits::File  implementa�on.

https://doc.rust-lang.org/core/marker/struct.PhantomData.html


dir.rs

Contains an incomplete Dir  struct which you will implement trait::Dir  for. Also
contains incomplete defini�ons for raw, on-disk directory entry structures.

entry.rs

Contains an incomplete Entry  struct which you will implement traits::Entry  for.

metadata.rs

Contains structures ( Date , Time , Attributes ) that map to raw, on-disk entry metadata
as well as incomplete structures ( Timestamp , Metadata ) which you should implement
the appropriate file system traits for.

fat.rs

Contains the FatEntry  structure which wraps a value for a FAT entry and which can
be used to easily read the status of the cluster corresponding to the FAT entry.

cluster.rs

Contains the Cluster  structure which wraps a raw cluster number and can be used to
read the logical cluster number.

When you implement your file system, you should complete and use each of these structures
and types. Don’t be afraid to add extra helper methods to any of these structure. Do not,
however, change any of the trait defini�ons or exis�ng method signatures that we have
provided for you.

Read through all of the code now, star�ng with vfat.rs , and ensure you understand how
everything fits together.

Implementation

You’re now ready to implement a read-only FAT32 file system. You may approach the
implementa�on in any order you see fit.

We have provided a somewhat rigorous set of tests to check your implementa�on. Our tests
use files in ext/fat32-imgs . In this directory you will find several real MBR, EBPB, and FAT32
file system images as well as hash values for file system traversals as run against our
reference implementa�on. You may find it useful to analyze and check your understanding
again the raw binaries by using a hex editor such as Bless (Linux), Hex Fiend (macOS), or HxD
(Windows).

 Extract Fat32 test images first!



The images we provided in ext/fat32-imgs  are compressed. You need to un-archive them
first before tes�ng. You can use bin/extract-fat.sh  to do that for you.

You can run the tests with cargo test . While debugging, you may wish to run the tests with
cargo test -- --nocapture  to prevent Cargo from capturing output to stdout  or stderr . You

may also find it useful to add new tests as you progress. To prevent future merge conflicts,
you should add new tests in a file different from tests.rs .

Your implementa�on should adhere to the following guidelines:

Use meaningful types where you can.

For instance, instead of using a u16  to represent a raw �me field, use the Time  struct.

Avoid unsafe  code as much as possible.

Our implementa�on uses a total of four non- union  lines of unsafe . Addi�onally, our
implementa�on uses three lines of unsafe  related to accessing unions. The number of
unsafe  code in your implementa�on should be comparable to this.

Avoid duplica�on by using helpers methods as necessary.

It’s o�en useful to abstract common behavior into helper methods. You should do so
when it makes sense.

Ensure your implementa�on is cluster size and sector size agnos�c.

Do not hard-code or assume any par�cular values for sector sizes or cluster sizes. Your
implementa�on must func�on with any cluster and sector sizes that are integer
mul�ples of 512 as recorded in the EBPB.

Don’t double buffer unnecessarily.

Ensure that you don’t read a sector into memory that is already held in the sector
cache to conserve memory.

Our recommended implementa�on approach is as follows:

1. Implement MBR parsing in mbr.rs .

Your implementa�on will likely require the use of an unsafe  method, but no more
than one line. Possible candidates are slice::from_raw_parts_mut() or
mem::transmute(). mem::transmute()  is an incredibly powerful method. You should
avoid it if you can. Otherwise, you should understand its implica�ons thoroughly
before using it.

https://doc.rust-lang.org/core/slice/fn.from_raw_parts_mut.html
https://doc.rust-lang.org/core/mem/fn.transmute.html


When you implement Debug , use the debug_struct() method on Formatter . You can
use the Debug  implementa�on we have provided for CachedPartition  as a reference.

 Packed struct in Rust

Rust is very strict about the address alignment. All Rust references should respect
the alignment of the underlying type. Because of this requirement, borrowing a
field of a packed struct is some�mes illegal. You can workaround this limita�on by
copying the value to a temporary variable and borrowing the local variable with a
syntax &{ struct.field } .

2. Implement EBPB parsing in vfat/ebpb.rs .

As with the MBR, your implementa�on will likely require the use of an unsafe

method, but no more than one line.

3. Test your MBR and EBPB implementa�on.

Mock-up MBRs and EBPBs and ensure that you parse the values successfully. Note
that we have provided an implementa�on of BlockDevice  for Cursor<&mut [u8]> .
Remember that you can pre�y-print a structure using:

println!("{:#?}", x); 

4. Implement CachedPartition  in vfat/cache.rs .

5. Implement VFat::from()  in vfat/vfat.rs .

Use your MasterBootRecord , BiosParameterBlock , and CachedPartition  implementa�ons
to implement VFat::from() . Test your implementa�on as you did your MBR and EBPB
implementa�ons.

6. Implement FatEntry  in vfat/fat.rs .

7. Implement VFat::fat_entry , VFat::read_cluster() , and VFat::read_chain() .

These helpers methods abstract reading from a Cluster  or a chain star�ng from a
Cluster  into a buffer. You’ll likely need other helper methods, like one to calculate the

disk sector from a cluster number, to implement these methods. You may wish to add
helper methods to the Cluster  type. You should use the VFat::fat_entry()  method
when implemen�ng read_cluster()  and read_chain() .

8. Complete the vfat/metadata.rs  file.

https://doc.rust-lang.org/core/fmt/struct.Formatter.html#method.debug_struct


The Date , Time , and Attributes  types should map directly to fields in the on-disk
directory entry. Refer to the FAT structures PDF when implemen�ng them. The
Timestamp  and Metadata  types do not have an analogous on-disk structure, but they

serve as nicer abstrac�ons over the raw, on-disk structures and will be useful when
implemen�ng the Entry , File , and Dir  traits.

9. Implement Dir  in vfat/dir.rs  and Entry  in vfat/entry.rs .

Start by adding fields that store the directory’s first Cluster  and a file system handle
to Dir . Then implement the trait::Dir  trait for Dir . You may wish to provide
dummy trait implementa�ons for the File  type in vfat/file.rs  while implemen�ng
Dir . You’ll want to create a secondary struct that implements Iterator<Item = Entry>

and return this struct from your entries()  method. You will likely need to use at-most
one line of unsafe  when implemen�ng entries() ; you may find the VecExt  and
SliceExt  trait implementa�ons we have provided par�cularly useful here. Note that

you will frequently need to refer to the FAT structures PDF while implemen�ng Dir .

Parsing an Entry

Because the on-disk entry may be either an LFN entry or a regular entry, you must
use a union  to represent an on-disk entry. We have provided such a union for you:
VFatDirEntry . You can read about unions in Rust in the Rust reference and about

unions in general in the union type Wikipedia entry.

You should first interpret a directory entry as an unknown entry, use that structure
to determine whether there is an entry, and if so, the true kind of entry, and finally
interpret the entry as that structure. Working with union s will require using
unsafe . Do so sparingly. Our implementa�on uses one line of unsafe  three �mes,

one to access each variant.

When parsing a directory entry’s name, you must manually add a .  to the non-
LFN based directory entries to demarcate the file’s extension. You should only add
a .  if the file’s extension is non-empty.

Finally, you’ll need to decode UTF-16 characters when parsing LFN entries. Use
the decode_u�16() func�on to do so. You will find it useful to store UTF-16
characters in one or more Vec<u16>  while parsing a long filename.

Dir::find()

You should implement Dir::find()  a�er you implement the traits::Dir  trait for
Dir . Note that Dir::find()  must be case-insensi�ve. Your implementa�on should

be rela�vely short. You can use the eq_ignore_ascii_case() method to perform case-
insensi�ve comparisons.

10. Implement File  in vfat/file.rs .

https://tc.gts3.org/cs3210/2020/spring/r/fat-structs.pdf
https://tc.gts3.org/cs3210/2020/spring/r/fat-structs.pdf
https://doc.rust-lang.org/reference/items/unions.html
https://en.wikipedia.org/wiki/Union_type
https://doc.rust-lang.org/core/char/fn.decode_utf16.html
https://doc.rust-lang.org/std/primitive.str.html#method.eq_ignore_ascii_case


Start by adding a fields that store the file’s first Cluster  and a file system handle to
File . Then implement the trait::File  trait and any required supertraits. Modify the

iterator you return from entries()  as necessary.

11. Implement VFat::open()  in vfat/vfat.rs .

Finally, implement the VFat::open()  method. Use the components() method to iterate
over a Path ’s components. Note that the Path  implementa�on we have provided for
you in the shim  library does not contain any of the methods that require a file system.
These include read_dir() , is_file() , is_dir() , and others.

Use your Dir::find()  method in your implementa�on. You may find it useful to add a
helper method to Dir .

Once your implementa�on passes all of the unit tests and works as you expect, you may
once again revel; you have implemented a real file system! A�er sufficient reveling, proceed
to the next phase.

 Did you find any undefined behavior in the skeleton code? (undefined-behavior)

This is an op�onal extra credit ques�on. While doing the assignment, did you no�ce any
undefined behavior or unsound API in our skeleton code except those jus�fied with
comments? What type of Rust requirements do they violate? Why they seem to behave
well in prac�ce? How can we fix them?

Phase 3: Saddle Up

In this phase, you will interface with an exis�ng SD card controller driver for the Raspberry Pi
3 using Rust’s foreign func�on interface, or FFI. You can read more about Rust’s FFI in TRPL.
You will also create a global handle the file system for your opera�ng system to use. You will
be working primarily in kernel/src/fs .

Subphase A: SD Driver FFI

Rust’s foreign func�on interface allows Rust code to interact with so�ware wri�en in other
programming languages and vice-versa. Foreign items are declared in an extern  block:

extern { 
    static outside_global: u32; 
    fn outside_function(param: i16) -> i32; 
} 

This declares an external outside_function  as well as an outside_global . The func�on and
global be used as follows:

https://doc.rust-lang.org/std/path/struct.Path.html#method.components
https://en.wikipedia.org/wiki/Foreign_function_interface
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html#using-extern-functions-to-call-external-code


unsafe { 
    let y = outside_function(10); 
    let global = outside_global; 
} 

Note the required use of unsafe. Rust requires the use of unsafe  because it cannot ensure
that the signatures you have specified are correct. The Rust compiler will blindly emit
func�on calls and variable reads as requested. In other words, as with every other use of
unsafe , the compiler assumes that what you’ve done is correct. At link-�me, symbols named
outside_function  and outside_global  must exist for the program to successfully link.

For a Rust func�on to be called from a foreign program, the func�on’s loca�on (its memory
address) must be exported with a known symbol. Typically, Rust mangles func�on symbols for
versioning and namespacing reasons in an unspecified manner. As such, by default, it is not
possible to know the symbol that Rust will generate for a given func�on and thus not
possible to call that func�on from an external program. To prevent Rust from mangling
symbols, you can use the #[no_mangle]  a�ribute:

#[no_mangle] 
fn call_me_maybe(ptr: *mut u8) { .. } 

A C program would then be able to call this func�on as follows:

void call_me_maybe(unsigned char *); 
 
call_me_maybe(...); 

Why can’t Rust ensure that using foreign code is safe? (foreign-safety)

Explain why Rust cannot ensure that using foreign code is safe. In par�cular, explain why
Rust can ensure that other Rust code is safe, even when it lives outside of the current
crate, but it cannot do the same for non-Rust code.

Why does Rust mangle symbols? (mangling)

C does not mangle symbols. C++ and Rust, on the other hand, do. What’s different about
these languages that necessitates name mangling? Provide a concrete example of what
would go wrong if Rust didn’t name mangle.

SD Driver



We have provided a precompiled SD card driver library in kern/.cargo/libsd.a . We’ve also
modified the build process so that the library is linked into the kernel. We’ve provided the
defini�ons for the items exported from the library in an extern  block in kern/src/fs/sd.rs .

The library depends on a wait_micros  func�on which it expects to find in your kernel. The
func�on should sleep for the number of microseconds passed in. You will need to create and
export this func�on for your kernel to successfully link. The C signature for the func�on is:

/* 
* Sleep for `us` microseconds. 
*/ 
void wait_micros(unsigned int us); 

Your task is to wrap the unsafe external API in a safe, Rusty API. Implement an Sd  struct
that ini�alizes the SD card controller in its new()  method. Then, implement the BlockDevice

trait for Sd . You will need to use unsafe  to interact with the foreign items. Test your
implementa�on by manually reading the card’s MBR in kmain . Ensure that the bytes read
match what you expect. When everything works as expected, proceed to the next subphase.

 Hint

On 64-bit ARM, an unsigned int  in C is a u32  in Rust.

 Is your implementa�on thread-safe? (foreign-sync)

The precompiled SD driver we’ve provided you uses a global variable ( sd_err ) to keep
track of error states without any kind of synchroniza�on. As such, it has no hope of being
thread-safe. How does this affect the correctness of your bindings? Recall that you must
uphold Rust’s data race guarantees in any unsafe  code. Assuming your kernel called
sd_init  correctly, is your BlockDevice  implementa�on for Sd  thread-safe as required?

Why or why not?

Subphase B: File System

In this subphase you will expose and ini�alize a global file system for use by your kernel. You
will be working primarily in kern/src/fs.rs .

Like the memory allocator, the file system is a global resource: we want it to always be
available so that we can access the data on the disk at any point. To enable this, we’ve
created a global static FILE_SYSTEM: FileSystem  in main.rs ; it will serve as the global handle to
your file system. Like the allocator, the file system begins unini�alized.

Tying the Knot



You’ve now implemented both a disk driver and a file system: it’s �me to �e them together.
Finish the implementa�on of the FileSystem  struct in kernel/src/fs.rs  by using your FAT32
file-system and your Rusty bindings to the foreign SD card driver. You should ini�alize your
file-system using the Sd  BlockDevice  in the initialize()  func�on. Then, implement the
FileSystem  trait for the structure, deferring all calls to the internal VFat . Finally, ensure that

you ini�alize the file system in kmain , just a�er the allocator.

Test your implementa�on by prin�ng the files at the root ( "/" ) of your SD card in kmain .
Once everything works as your expect, proceed to the next phase.

Phase 4: Mo’sh

In this phase, you will implement the cd , ls , pwd , and cat  shell commands. You will be
working primarily in kern/src/shell.rs .

‘Finished’ Product

Working Directory

You’re likely familiar with the no�on of a working directory already. The current working
directory (or cwd ) is the directory under which rela�ve file accesses are rooted under. For
example, if the cwd  is /a , then accessing hello  will result in accessing the file /a/hello . If
the cwd  is switched to /a/b/c , accessing hello  will access /a/b/c/hello , and so on. The /

character can be prepended to any path to make it absolute so that it is not rela�ve to the
current working directory. As such, /hello  will always refer to the file named hello  in the
root directory regardless of the current working directory.

In a shell, the current working directory can be changed to dir  with the cd <dir>  command.
For example, running cd /hello/there  will change the cwd  to /hello/there . Running cd you

a�er this will result in the cwd  being /hello/there/you .

https://tc.gts3.org/cs3210/2020/spring/_images/shell1.gif


Most opera�ng systems provide a system call that changes a process’s working directory.
Because our opera�ng system has neither processes nor system calls yet, you’ll be keeping
track of the cwd  directly in the shell.

Commands

You will implement four commands that expose expose the file system through your
opera�ng system’s primary interface: the shell. These are cd , ls , pwd , and cat . For the
purposes of this assignment, they are specified as follows:

pwd  - print the working directory

Prints the full path of the current working directory.

cd <directory>  - change (working) directory

Changes the current working directory to directory . The directory  argument is
required.

ls [-a] [directory]  - list the files in a directory

Lists the entries of a directory. Both -a  and directory  are op�onal arguments. If -a

is passed in, hidden files are displayed. Otherwise, hidden files are not displayed. If
directory  is not passed in, the entries in the current working directory are displayed.

Otherwise, the entries in directory  are displayed. The arguments may be used
together, but -a  must be provided before directory .

Invalid arguments results in an error. It is also an error if directory  does not
correspond to a valid, exis�ng directory.

cat <path..>  - concatenate files

Prints the contents of the files at the provided path s, one a�er the other. At least one
path  argument is required.

It is an error if a path  does not point to a valid, exis�ng file. It is an error if an
otherwise valid file contains invalid UTF-8.

All non-absolute paths must be must be treated as rela�ve to the current working directory if
they are not absolute. For an example of these commands in ac�on, see the GIF above.
When you implement these commands yourself, you are free to display directory entries and
errors in any way that you’d like as long as all of the informa�on is present.

Implementation



Extend your shell in kern/src/shell.rs  with these four commands. Use a mutable PathBuf to
keep track of the current working directory; this PathBuf  should be modified by the cd

command. You will find it useful to create func�ons with a common signature for each of
your commands. For an extra level of type-safety, you can abstract the concept of an
executable command into a trait that is implemented for each of your commands.

Once you have implemented, tested, and verified your four commands against the
specifica�ons above, you’re ready to submit your assignment. Congratula�ons!

 Ensure you’re using your bin allocator!

Your file system is likely very memory intensive. To avoid running out of memory, ensure
you’re using your bin allocator.

 Hint

Use the exis�ng methods of PathBuf  and Path  to your advantage.

 Hint

You’ll need to handle ..  and .  specially in cd .

Submission

Once you’ve completed the tasks above, you’re done and ready to submit! Congratula�ons!

You can call make check  in tut/3-fs  directory to check if you’ve answered every ques�on
and cargo test  in lib/fat32  directory to run the unit tests for your FAT32 implementa�on.
Note that there are no unit tests for some tasks in os . You’re responsible for ensuring that
they work as expected.

Once you’ve completed the tasks above, you’re done and ready to submit! Ensure you’ve
commi�ed your changes. Any uncommi�ed changes will not be visible to us, thus
unconsidered for grading.

When you’re ready, push a commit to your GitHub repository with a tag named lab3-done .

# submit lab3 
$ git tag lab3-done 
$ git push --tags 

https://doc.rust-lang.org/std/path/struct.PathBuf.html

