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Lab 2: Shell and Bootloader

Handed out: Tuesday, January 28, 2020
Due: Monday, February 10, 2020

Introduction

In this assignment, you will write useful u�li�es, libraries, and a simple shell for your
Raspberry Pi. You’ll also write generic drivers for GPIO, UART, and the built-in �mer. Finally,
you’ll write a “bootloader” using your new drivers that loads program binaries over UART
using the XMODEM protocol and executes them.

Getting the Skeleton Code

To get the skeleton code for lab2, fetch the updates from our git repository to your
development machine.

$ git fetch skeleton 
$ git merge skeleton/lab2 

This is the directory structure of our repository. The directories you will be working on this
assignment are marked with *.

. 
├── bin : common binaries/utilities 
├── doc : reference documents 
├── ext : external files (e.g., resources for testing) 
├── tut : tutorial/practices 
│    ├── 0-rustlings 
│    ├── 1-blinky 
│    └── 2-shell : questions for lab2 * 
├── boot : bootloader * 
├── kern : the main os kernel * 
└── lib  : required libraries 
     ├── pi * 
     ├── shim 
     ├── stack-vec * 
     ├── ttywrite * 
     ├── volatile * 
     └── xmodem * 

Please resolve conflict if you have and proceed to the next phase.

https://tc.gts3.org/cs3210/2020/spring/index.html
https://tc.gts3.org/cs3210/2020/spring/lab.html
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter


We recommend the following directory structure for your assignments. Confirm that your
directories are properly laid out by running make  inside the kern  directory now. If all is well,
the command will return successfully. If everything is good, feel free to explore the contents
of the repository.

This and future assignments include wri�ng ques�ons that you must respond to. Here’s an
example of such ques�on:

 How do you set other GPIO pins? (1-blinky)

In assignment 1-blinky, you enabled GPIO pin 16 as an output and then repeatedly set
and cleared it by wri�ng to registers GPFSEL1 , GPSET0 , and GPCLR0 . Which three registers
would you write to to do the same for GPIO pin 27? Which physical pin on the Raspberry
Pi maps to GPIO pin 27?

The word in a parenthesis of the ques�on indicates the name of a file located inside
questions/  directory rela�ve to the lab name in which the ques�on is being asked. For

instance, every ques�ons in this Lab2: Shell and Bootloader  should be answered in
tut/2-shell/questions/  subdirectory. Note that we have pre-generated empty files for every

ques�on.

Prac�ce responding to ques�ons now by answering the 1-blinky  ques�on above.

Phase 1: Oxidation

In this phase, you will write two libraries, one command-line u�lity, and review one library.
You will be working in the stack-vec , volatile , ttywrite , and xmodem  skeleton
subdirectories located in lib  directory.

All projects are being managed with Cargo. You will find the following cargo  commands
useful:

cargo build  - build an applica�on or library
cargo test  - test an applica�on or library
cargo run  - run an applica�on
cargo run -- $flags  - run an applica�on and pass arbitrary flags to it

For more informa�on on using Cargo and how Cargo works, see the Cargo Book.

Subphase A: StackVec

One important facility that opera�ng systems provide is memory alloca�on. When a C, Rust,
Java, Python, or just about any applica�on calls malloc()  and malloc()  has run out of
memory from the opera�ng system, a system call is eventually made to request addi�onal

https://doc.rust-lang.org/cargo/index.html


memory. The opera�ng system determines if there is memory available, and if so, fulfills the
request for memory.

Memory alloca�on is a complicated story.

In prac�ce, modern opera�ng systems like Linux have a complicated rela�onship with
memory alloca�on. For instance, as an op�miza�on, most requests for memory alloca�on
are only “virtually” handled: no physical memory is actually allocated un�l the applica�on
tries to use the newly allocated memory. Nonetheless, most opera�ng systems aim to
provide the illusion that they are alloca�ng memory in the simplis�c manner we’ve
described. Opera�ng systems are master liars (🍰).

Heap-allocated structures like Vec , String , and Box  internally call malloc()  to allocate
memory as necessary. This means that these structures require opera�ng system support to
func�on. In par�cular, they require the opera�ng system to support memory alloca�on. We
haven’t yet started wri�ng our opera�ng system, so clearly there’s no memory alloca�on
support for our �ny bare-metal programs to make use of. As such, we can’t use heap-
allocated structures like Vec  un�l our opera�ng system is further along.

This is a real shame because Vec  is a nice abstrac�on! It allows us to think about push ing
and pop ing elements without having to keep track of memory ourselves. How we can get the
benefits of the Vec  abstrac�on without suppor�ng memory alloca�on?

One common technique is to pre-allocate memory and then hand that memory to a structure
to abstract away. Some ways to pre-allocate memory include using static  declara�ons to
set apart memory in the sta�c sec�on of a binary or through stack alloca�ons from local
variable declara�ons. In any case, the alloca�ons is of a fixed, predetermined size.

In this subphase, you will implement the StackVec  structure, a structure that exposes a Vec -
like API when given pre-allocated memory. You will use the StackVec  type later in phase 2
when implemen�ng a shell for your Raspberry Pi. You will work in the lib/stack-vec  skeleton
subdirectory. The subdirectory contains the following files:

Cargo.toml  - configura�on file for Cargo
src/lib.rs  - where you will write your code
src/tests.rs  - tests that will run when cargo test  is called

The StackVec  Interface

A StackVec<T>  is created by calling StackVec::new() , passing in a mutable slice to values of
any type T . The StackVec<T>  type implements many of the methods that Vec implements
and is used in much the same way. Here’s an example of a StackVec<u8>  being used:

https://doc.rust-lang.org/nightly/std/vec/struct.Vec.html


let mut storage = [0u8; 10]; 
let mut vec = StackVec::new(&mut storage); 
 
for i in 0..10 { 
    vec.push(i * i).expect("can push 10 times"); 
} 
 
for (i, v) in vec.iter().enumerate() { 
    assert_eq!(*v, (i * i) as u8);
} 
 
let last_element = vec.pop().expect("has elements"); 
assert_eq!(last_element, 9 * 9); 

We’ve declared the StackVec  structure for you already:

pub struct StackVec<'a, T: 'a> { 
    storage: &'a mut [T], 
    len: usize 
} 

Understanding StackVec

The following ques�ons test your understanding about the StackVec  interface:

Why does push  return a Result ? (push-fails)

The push  method from Vec  in the standard library has no return value, but the push

method from our StackVec  does: it returns a Result  indica�ng that it can fail. Why can
StackVec::push()  fail where Vec::push()  does not?

Why is the 'a  bound on T  required? (life�me)

struct StackVec<'a, T> { buffer: &'a mut [T], len: usize } 

Rust automa�cally enforces the bound T: 'a  and will complain if type T  lives shorter
than the life�me 'a . For instance, if T  is &'b str  and 'b  is strictly shorter than 'a ,
Rust won’t allow you to create the instance of StackVec<'a, &'b str> .

Why is the bound required? What could go wrong if the bound wasn’t enforced by Rust?

Why does StackVec  require T: Clone  to pop() ? (clone-for-pop)



The pop  method from Vec<T>  in the standard library is implemented for all T , but the
pop  method from our StackVec  is only implemented when T  implements the Clone

trait. Why might that be? What goes wrong when the bound is removed?

Implementing StackVec

Implement all of the unimplemented!()  StackVec  methods in stack-vec/src/lib.rs . Each
method is documented in the source code. We have also provided tests in src/tests.rs  that
help ensure that your implementa�ons are correct. You can run these tests with cargo test .
You’ll also need to implement the Deref , DerefMut , and IntoIterator  traits for StackVec  as
well as the IntoIterator  trait for &StackVec  for all of the cargo test  tests to pass. Once you
feel confident that you implementa�on is correct and have answered this subphase’s
ques�ons, proceed to the next subphase.

Which tests make use of the Deref  implementa�ons? (deref-in-tests)

Read through the tests we have provided in src/tests.rs . Which tests would fail to
compile if the Deref  implementa�on did not exist? What about the DerefMut

implementa�on? Why?

 Our unit tests are incomplete!

Our unit tests provide a baseline truth, but they are not complete! We will run addi�onal
tests when we grade your assignment. You may wish to find the gaps in our tests and add
addi�onal tests of your own to fill them.

Subphase B: volatile

In this subphase, you will learn about vola�le memory accesses, read the source code in the
volatile  skeleton subdirectory, and answer ques�ons related to the source code. You won’t

be wri�ng any code in this subphase.

Like opera�ng systems, compilers are masters at making things appear as if they’re doing
what you think they’re doing when in reality, they’re really doing something en�rely different
for the sake of op�miza�on. One such op�miza�on is dead-access elimina�on: compilers
remove memory accesses (reads and writes) when they can prove doing so has no observable
effect on the program’s execu�on. For instance, consider the following program:

fn f() { 
    let mut x = 0; 
    let y = &mut x; 
    *y = 10; 
} 



The compiler can completely eliminate the write to *y  by reasoning that *y  is never read
a�er it’s wri�en. The compiler concludes that as a result, the write cannot possibly effect the
program, and eliminates it in the compiled binary. For the same reason, it can then proceed to
eliminate the declara�on for y , the declara�on for x , and calls to f()  en�rely.

These kinds of op�miza�ons are almost exclusively beneficial: they speed up our programs
without affec�ng their outcome. But some�mes these op�miza�ons can have unintended
consequences. Say, for example, that y  was poin�ng to a write-only memory-mapped
register. Then, writes to *y  will have observable effects without having to read *y

therea�er. If the compiler is not aware of this, it will op�mize away these writes, and our
program will not func�on correctly.

How can we force the compiler to keep around reads and writes that appear to have no
effects at the source code level? This is where volatile  memory accesses come in: the
compiler promises not to op�mize away vola�le memory accesses. So if we want to ensure a
read or write occurs at run�me, we must perform a vola�le memory access.

Rusty volatile

In Rust, we use the read_vola�le and write_vola�le methods to perform vola�le reads and
writes to a raw pointer.

What’s a raw pointer?

By now you’re familiar with references ( &T  and &mut T ). A raw pointer in Rust ( *const T

and *mut T ) is a “reference” that isn’t tracked with life�mes by Rust’s borrow checker.
Because of this, read or writes to these pointers may be invalid, just as in C. Rust
considers them unsafe , and code that reads or writes them must be annotated with
unsafe  to indicate this. You can read more about raw pointers in the rustdocs.

Calling read_vola�le and write_vola�le every �me we want to perform a vola�le read or write
is error prone and frustra�ng. Thankfully Rust provides us the tools to make this easier and
safer. Ideally we can simply declare a pointer as vola�le (as in C) and ensure that every read
or write therea�er is vola�le. Even be�er, we should be able declare a pointer as read-only,
write-only (unlike in C), or read/write and ensure only the appropriate memory accesses can
be made.

Introducing Volatile , ReadVolatile , WriteVolatile , and UniqueVolatile

The volatile  crate in the volatile/  skeleton subdirectory implements these four types that
allow us to do just this. Read the documenta�on for these types now by running
cargo doc --open  inside of the volatile/  directory.

Why does Unique<Volatile>  exist? (unique-vola�le)

https://doc.rust-lang.org/nightly/core/ptr/fn.read_volatile.html
https://doc.rust-lang.org/nightly/core/ptr/fn.write_volatile.html
https://doc.rust-lang.org/nightly/std/primitive.pointer.html
https://doc.rust-lang.org/nightly/core/ptr/fn.read_volatile.html
https://doc.rust-lang.org/nightly/core/ptr/fn.write_volatile.html


Both Volatile  and Unique<Volatile>  allow read/write vola�le accesses to an underlying
pointer. According to the documenta�on, what is the difference between these two
types?

Now open the source code in src/lib.rs , src/traits.rs , and src/macros.rs . Read through
the source code to the best of your abili�es. When you’re ready, answer the following
ques�ons. Once you have answered these ques�ons, you’re ready to move on to the next
subphase.

What’s with #[repr(C)] ?

The #[repr(C)]  annota�on forces Rust to lay out the structure’s fields in the same way
that C would. In general, Rust op�mizes the order and padding between fields of
structures in an unspecified way. When we cast a raw address to a pointer to a structure,
we typically have a very specific memory layout in mind. The #[repr(C)]  annota�on lets
us confide that Rust will arrange the structure as we intend it to, not as it wishes.

 How are read-only and write-only accesses enforced? (enforcing)

The ReadVolatile  and WriteVolatile  types make it impossible to write and read,
respec�vely, the underlying pointer. How do they accomplish this?

What do the macros do? (macros)

What do the readable! , writeable! , and readable_writeable!  macros do?

Subphase C: xmodem

In this subphase, you will implement the XMODEM file transfer protocol in the xmodem

library in the xmodem/  skeleton subdirectory. You will primarily be working in
xmodem/src/lib.rs .

XMODEM is a simple file transfer protocol originally developed in 1977. It features packet
checksums, cancella�on, and automa�c retries. It is widely implemented and used for
transfers through serial interfaces. Its best feature, however, is its simplicity. For more about
its history, see the XMODEM Wikipedia ar�cle.

We will use the XMODEM protocol to transfer files to the Raspberry Pi. While we could use
exis�ng implementa�ons of the XMODEM protocol to send data to the Pi, we will s�ll need
to write our own receiver. So, while we’re at it, we’ll be implemen�ng XMODEM transmission
as well.

The Protocol

https://en.wikipedia.org/wiki/XMODEM


The XMODEM protocol is described in detail in the Understanding The X-Modem File
Transfer Protocol txt file. We describe it again here, for posterity.

 Do not base your implementa�on off of Wikipedia’s explana�on!

While Wikipedia’s explana�on is helpful at a high level, many of the details presented
there are different from the protocol we’ll be implemen�ng here. As such, do not use the
ar�cle as a reference for this subphase.

XMODEM is a binary protocol: bytes are sent and received in the raw. It is also “half duplex”:
at any point in �me, either the sender or receiver is sending data, but never both. Finally it is
packet-based: data is separated into 128 byte chunks known as packets. The protocol
dictates which bytes are sent when, what they mean, and how they’re interpreted.

First, we define a few constants:

const SOH: u8 = 0x01; 
const EOT: u8 = 0x04; 
const ACK: u8 = 0x06; 
const NAK: u8 = 0x15; 
const CAN: u8 = 0x18; 

To start the file transfer, the receiver sends a NAK  byte while the sender waits for a NAK

byte. Once the sender has received the NAK  byte, packet transmission begins. The receiver
only sends a NAK  byte to begin the file transfer, not once for every packet.

Once file transfer has begun, each packet’s transmission and recep�on is iden�cal. Packets
are numbered in sequen�al order star�ng at 1  and wrap around to 0  a�er 255 .

https://cs140e.sergio.bz/assignments/1-shell/data/XMODEM.txt
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XMODEM protocol diagram

To send a packet, the sender:

1. Sends an SOH  byte.
2. Sends the packet number.
3. Sends the 1s complement of the packet number ( 255 - $packet_number ).
4. Sends the packet itself.
5. Sends the packet checksum.

The checksum is the sum of all of the bytes in the packet mod 256.
6. Reads a byte from the receiver.

If the byte is NAK , transmission for the same packet is retried up to 10 �mes.
If the byte is ACK , the next packet is sent.

The receive a packet, the receiver performs the inverse:

https://tc.gts3.org/cs3210/2020/spring/_images/xmodem-diagram.svg


1. Waits for an SOH  or EOT  byte from the sender.

If a different byte is received, the receiver cancels the transfer.
If an EOT  byte is received, the receiver performs end of transmission.

2. Reads the next byte and compares it to the current packet number.

If the wrong packet number is received, the receiver cancels the transfer.
3. Reads the next byte and compares it to the 1s complement of the packet number.

If the wrong number is received, the receiver cancels the transfer.
4. Reads a packet (128 bytes) from the sender.
5. Computes the checksum for the packet.

The checksum is the sum of all of the bytes in the packet mod 256.
6. Reads the next byte and compares it to the computed checksum.

If the checksum differs, sends a NAK  byte and retries recep�on for the same
packet.
If the checksum is the same, sends an ACK  byte and receives the next packet.

To cancel a transfer, a CAN  byte is sent by either the receiver or sender. When either side
receives a CAN  byte, it errors out, abor�ng the connec�on.

To end the transmission, the sender:

1. Sends an EOT  byte.
2. Waits for a NAK  byte. If a different byte is received, the sender errors out.
3. Sends a second EOT  byte.
4. Waits for an ACK  byte. If a different byte is received, the sender errors out.

To end the transmission, the receiver performs the following a�er receiving the first EOT :

1. Sends a NAK  byte.
2. Waits for a second EOT  byte. If a different byte is received, the receiver cancels the

transfer.
3. Sends an ACK  byte.

Implementing XMODEM

We have provided an unfinished implementa�on of the XMODEM protocol in the xmodem

skeleton subdirectory. Your task is to complete the implementa�on by wri�ng the
expect_byte , expect_byte_or_cancel , read_packet , and write_packet  methods in src/lib.rs .

Your implementa�ons should make use of the internal state of the Xmodem  type: packet  and
started . We recommend reading over the exis�ng code before star�ng.



You should begin by implemen�ng the expect_byte  and expect_byte_or_cancel  methods. You
should then make use of all four of the helper methods (including read_byte  and write_byte )
to implement read_packet  and write_packet . To see how these methods are used, read the
transmit  and receive  implementa�ons which transmit or receive a complete data stream

using XMODEM via these methods. Be mindful of the specifica�ons in the doc-comments.
You can test your implementa�on using cargo test . Once you are confident that your
implementa�on is correct, proceed to the next subphase.

 Do not use any addi�onal items from std .

Your implementa�on should only use items from shim::io . It should not use other items
from std  or any other libraries.

 Hint

Our reference implementa�ons for {read,write}_packet  are roughly 43 lines of code each.

 Hint

The io::Read and io::Write rustdocs will be useful.

 Hint

Use the ?  operator generously.

 Hint

The test source code can be a helpful guide.

 Hint

You can use ioerr!  macro to make and return a new io::Error  easily. Please refer
shim/src/macros.rs  to find more macros which can be useful.

Subphase D: ttywrite

In this subphase, you will write a command line u�lity, ttywrite , that will allow you to send
data to your Raspberry Pi in the raw or via the XMODEM protocol. You will use your xmodem

library from the previous subphase in your implementa�on. You will write your code in
ttywrite/src/main.rs . To test your ttywrite  implementa�on, use the provided test.sh  script.

What is a serial device?

https://doc.rust-lang.org/nightly/std/io/trait.Read.html
https://doc.rust-lang.org/nightly/std/io/trait.Write.html


A serial device is any device that accepts communica�on one bit at a �me. This is known
as serial communica�on. In contrast, in parallel communica�on mul�ple bits are being
transferred at any point in �me in parallel. We will be communica�ng with our Raspberry
Pi via its UART device, a serial communica�on device.

What is a TTY?

A TTY is a “teletypewriter”. It is a ves�gial term that was adopted in compu�ng to describe
computer terminals. The term later become more general, coming to describe any device
intended to be communicated with over serial. For this reason, your computer calls the
device mapping to your Raspberry Pi a TTY.

Command-Line Interface

The skeleton code we have provided for ttywrite  already parses and validates command-line
arguments. To do so, it uses the structopt crate from crates.io which itself uses clap. You’ll
no�ce that we list it as a dependency in the Cargo.toml  file. structopt works through code
genera�on. We simply annotate a structure and its fields with a declara�on of our command-
line arguments and structopt generates the code to actually parse the command-line flags.

To see the interface that structopt generates, call the applica�on with --help . Remember
that you can pass arbitrary flags when using cargo run : cargo run -- --help . Take a look at
the interface now. Then, take a look at the Opt  structure in main.rs  and compare the
interface with its defini�on.

What happens when a flag’s input is invalid? (invalid)

Try passing in some invalid values for flags. For instance, it should not be possible to set
-f  to idk . How does structopt  know to reject invalid values?

You’ll no�ce that there are plenty of op�ons. All of these correspond to se�ngs available on
a serial device. For now it’s not important to know exactly what these se�ngs do.

Talking to a Serial Device

In main , you’ll see a call to serial::open. This is calling the open  func�on from the serial crate,
also on crates.io. This open  func�on returns a TTYPort which allows you to read and write to
the serial device (via its io::Read  and io::Write  trait implementa�ons) as well as read and
set se�ngs on a serial device (via its SerialDevice  trait implementa�on).

Writing the Code

https://github.com/TeXitoi/structopt
https://crates.io/
https://clap.rs/
https://github.com/TeXitoi/structopt
https://github.com/TeXitoi/structopt
https://github.com/TeXitoi/structopt
https://docs.rs/serial/0.4.0/serial/fn.open.html
https://docs.rs/serial/0.4.0/serial/
https://crates.io/
https://docs.rs/serial-unix/0.4.0/serial_unix/struct.TTYPort.html


Implement the ttywrite  u�lity. Your implementa�on should set all of the appropriate
se�ngs passed in via the command-line stored in the opt  variable in main . It should read
from stdin  if no input file is passed in or from the input file if one is passed in. It should
write the input data to the passed in serial device. If the -r  flag is set, it should send the
data as it is. Otherwise, you should use your xmodem  implementa�on from the previous
subphase to send the data using the XMODEM protocol. You should print the number of
bytes sent on a successful transmission.

To transmit using the XMODEM protocol, your code should use either the Xmodem::transmit

or Xmodem::transmit_with_progress  methods from the xmodem  library. We recommend using
transmit_with_progress  so that your u�lity indicates progress throughput the transmission. In

its simplest form, this might look as follows:

fn progress_fn(progress: Progress) { 
    println!("Progress: {:?}", progress); 
} 
 
Xmodem::transmit_with_progress(data, to, progress_fn) 

You can test the baseline correctness of your implementa�on using the test.sh  script in the
ttywrite  directory. When your implementa�on is at least somewhat correct, you will see the

following when the script is run:

Opening PTYs... 
Running test 1/10. 
wrote 333 bytes to input 
... 
Running test 10/10. 
wrote 232 bytes to input 
SUCCESS 

 Hint

You can retrieve a handle to stdin  with io::stdin().

 Hint

You may find the io::copy() func�on useful.

 Hint

The main()  func�on in our reference implementa�on is roughly 35 lines of code.

 Hint

https://doc.rust-lang.org/nightly/std/io/fn.stdin.html
https://doc.rust-lang.org/nightly/std/io/fn.copy.html


Keep the TTYPort documenta�on open while wri�ng your code.

Why does the test.sh  script always set -r ? (bad-tests)

The test.sh  script that we have provided always uses the -r  flag; it doesn’t test that
your u�lity uses the XMODEM protocol when it is asked to. Why might that be? What
does the XMODEM protocol expect that sending data in the raw doesn’t that makes
tes�ng its func�onality difficult?

Installing ttywrite  utility

A�er finish wri�ng the ttywrite  u�lity, install the tool with cargo install --path .  command.
This command will be used later to communicate with the bootloader.

Phase 2: Not a Seashell

In this phase, you will be implemen�ng drivers for the built-in �mer, GPIO, and UART
devices. You’ll use then these drivers to implement a simple shell. In the next phase, you’ll use
the same drivers to implement a bootloader.

What’s a driver?

The term driver, or device driver, describes so�ware that directly interacts with and
controls a hardware device. Drivers expose a higher-level interface to the hardware they
control. Opera�ng systems may interact with device drivers to expose an even higher-
level interface. For instance, the Linux kernel exposes ALSA (Advanced Linux Sound
Architecture), an audio API, which interacts with device drivers that in-turn interact
directly with sound cards.

Subphase A: Getting Started

Project Structure

Let’s recall the repository structure we saw at the beginning of this lab.

. 
├── ... 
├── boot : bootloader * 
├── kern : the main os kernel * 
└── lib  : required libraries 
     ├── pi * 
     ├── shim 
     ├── stack-vec * 
     ├── ttywrite * 
     ├── volatile * 
     └── xmodem * 

https://docs.rs/serial-unix/0.4.0/serial_unix/struct.TTYPort.html


All the libraries used by boot  and kernel  are located under the lib  directory.

shim  library selec�vely depends on either std  or no_std  library. With
#[cfg(feature = "no_std")]  specified, shim  makes use of core_io  and the custom no_std

module which has minimum library we need such as ffi , path  and sync . Otherwise, mostly
in the test code, shim  just uses std  library.

pi  subdirectory contains all of your driver code. The pi  library makes use of the volatile

library. It also depends on the shim  library.

boot  and kernel  make use of the pi  library to communicate with hardware. They also
depend on shim . In addi�on to that, boot  also depends on the xmodem  library, and kernel

depends on the stack-vec  library. The volatile  library has no dependencies. The diagram
below illustrates these rela�onships:

Kernel

The kern  directory contains the code for the opera�ng system kernel: the core of your
opera�ng system. Calling make  inside this directory builds the kernel. The build output is
stored in the build/  directory. To run the kernel, copy the build/kernel.bin  file to the root of
the MicroSD card as kernel8.img . You may wish to use a script to copy the kernel image to
the sdcard with make install  command. Please refer the Tools page to find details about our
Makefile .

At present, the kernel does absolutely nothing. By the end of this phase, the kernel will start
up a shell which you can communicate with.

As we saw above, the kernel  crate depends on the pi  library. As a result, you can use all of
the types and items from the pi  library in the kernel.

Documentation

https://tc.gts3.org/cs3210/2020/spring/_images/dep-diagram.png
https://tc.gts3.org/cs3210/2020/spring/lab/tools.html


While wri�ng your device drivers, you’ll want to keep the BCM2837 ARM Peripherals
Manual open.

Subphase B: System Timer

In this subphase, you will write a device driver for the ARM system �mer. You will primarily
be working in lib/pi/src/timer.rs  and kern/src/main.rs . The ARM system �mer is
documented on page 172 (sec�on 12) of the BCM2837 ARM Peripherals Manual.

Start by looking at the exis�ng code in lib/pi/src/timer.rs . In par�cular, note the
rela�onship between the following sec�ons:

const TIMER_REG_BASE: usize = IO_BASE + 0x3000; 
 
  #[repr(C)] 
  struct Registers { 
      CS: Volatile<u32>, 
      CLO: ReadVolatile<u32>, 
      CHI: ReadVolatile<u32>, 
      COMPARE: [Volatile<u32>; 4] 
  } 
 
  pub struct Timer { 
      registers: &'static mut Registers 
  } 
 
  impl Timer { 
      pub fn new() -> Timer { 
          Timer { 
              registers: unsafe { &mut *(TIMER_REG_BASE as *mut Registers) }, 
          } 
      } 
  } 

The one line of unsafe  in this program is very important: it casts the TIMER_REG_BASE  address
to a *mut Registers  and then casts that to an &'static mut Registers . We are telling Rust that
we have a sta�c reference to a Registers  structure at address TIMER_REG_BASE .

What is at the TIMER_REG_BASE  address? On page 172 of the BCM2837 ARM Peripherals
Manual, you’ll find that 0x3000  is the peripheral offset for the ARM system �mer. Thus,
TIMER_REG_BASE  is the address at which the ARM system �mer registers start! A�er this one

line of unsafe , we can use the registers  field to access the �mer’s registers safely. We can
read the CLO  register with self.registers.CLO.read()  and write the CS  register with
self.registers.CS.write() , then combine them together to represent the number of elapsed

microseconds.

Why can’t you write to CLO or CHI? (restricted-reads)

The BCM2837 documenta�on states that the CLO  and CHI  registers are read-only. Our
code enforces this property. How? What prevents us from wri�ng to CLO  or CHI ?

https://cs140e.sergio.bz/docs/BCM2837-ARM-Peripherals.pdf
https://cs140e.sergio.bz/docs/BCM2837-ARM-Peripherals.pdf
https://cs140e.sergio.bz/docs/BCM2837-ARM-Peripherals.pdf


What exactly is unsafe?

In short, unsafe  is a marker for the Rust compiler that you’re taking control of memory
safety: the compiler won’t protect you from memory issues. As a result, in unsafe

sec�ons, Rust lets you do anything you can do in C. In par�cular, you can cast between
types with more freedom, dereference raw pointers, and fabricate life�mes.

But note that unsafe  is very unsafe. You must ensure that everything you do in an unsafe

sec�on is, in fact safe. This is more difficult than it sounds, especially when Rust’s idea of
safe is much stricter than in other languages. As such, you should try not to use unsafe  at
all. For opera�ng systems, unfortunately, we must use unsafe  so that we can directly
speak to hardware, but we’ll typically limit our use to one line per driver.

If you want to learn more about unsafe , read Chapter 1 of the Nomicon.

Implement the Driver

Implement the Timer::read() , current_time() , and spin_sleep()  in lib/pi/src/timer.rs . The
signatures on these items indicate their expected func�onality. You’ll need to read the �mer’s
documenta�on in the BCM manual to implement Timer::read() . In par�cular, you should
understand which registers to read to obtain the �mer’s current u64  value. You can build the
pi  library with cargo build . You can also use cargo check  to type-check the library without

actually compiling it.

 Hint

You’ll find the core::�me::Dura�on page useful.

Testing Your Driver

Let’s test your driver by ensuring that spin_sleep()  is accurate. We’ll write the code to do
this in kern/src/main.rs .

Copy your LED blinky code from phase 4 of lab 1 into main.rs . Instead of the for  loop
based sleep func�on, use your newly wri�en spin_sleep()  func�on with Duration  to pause
between blinks. Compile the kernel, load it onto the MicroSD card as kernel8.img , and then
run it on the Raspberry Pi. Ensure that the LED blinks at the frequency that you intended it
to. Try other pause �mes and ensure that they all work as expected. Un�l you write the
bootloader in phase 3, you’ll need to keep swapping the MicroSD card between the Pi and
your computer to try out different binaries.

If your �mer driver is working as expected, proceed to the next subphase.

https://doc.rust-lang.org/nightly/nomicon/meet-safe-and-unsafe.html
https://doc.rust-lang.org/core/time/struct.Duration.html


Subphase C: GPIO

In this subphase, you will write a generic, pin-independent device driver for GPIO. You will
primarily be working in lib/pi/src/gpio.rs  and kern/src/main.rs . The GPIO subsystem is
documented on page 89 (sec�on 6) of the BCM2837 ARM Peripherals Manual.

State Machines

All hardware devices are state machines: they begin at a predetermined state and transi�on
to different states based on explicit or implicit inputs. The device exposes different
func�onality depending on which state it is in. In other words, only some transi�ons are valid
in some states. Importantly, this implies that some transi�ons are invalid when the device is in
a given state.

Most programming languages make it impossible to faithfully encode the seman�cs of a state
machine in hardware, but not Rust! Rust lets us perfectly encode state machine seman�cs,
and we’ll take advantage of this to implement a safer-than-safe device driver for the GPIO
subsystem. Our driver will ensure that a GPIO pin is never misused, and it will do so at
compile-�me.

Below is the state diagram for a subset of the GPIO state machine for a single pin:

CLEAR

SET

LEVEL

GPIO State Diagram

Our goal is to encode this state machine in Rust. Let’s start by interpre�ng the diagram:

The GPIO starts in the START  state.
From the START  state it can transi�on to one of three states:

1. ALT  - no transi�ons are possible from this state
2. OUTPUT  - two “self” transi�ons are possible: SET  and CLEAR

3. INPUT  - one “self” transi�on is possible: LEVEL

https://cs140e.sergio.bz/docs/BCM2837-ARM-Peripherals.pdf
https://en.wikipedia.org/wiki/Finite-state_machine
https://tc.gts3.org/cs3210/2020/spring/_images/gpio-diagram.svg


Which transi�ons did you follow in your lab 1 blinky ? (blinky-states)

When you implemen�ng the blinky code in phase 4 of lab 1, you implicitly implemented a
subset of this state machine. Which transi�ons did your code implement?

We’ll use Rust’s type system to ensure that a pin can only be SET  and CLEAR ed if it has been
transi�oned to the OUTPUT  state and the LEVEL  read if it is in the INPUT  state. Take a look at
the declara�on for the GPIO  structure in lib/pi/src/gpio.rs :

pub struct Gpio<State> { 
  pin: u8, 
  registers: &'static mut Registers, 
  _state: PhantomData<State> 
} 

The structure has one generic argument, State . Except for PhantomData , nothing actually uses
this argument. This is what PhantomData is there for: to convince Rust that the structure
somehow uses the generic even though it otherwise wouldn’t. We’re going to use the State

generic to encode which state the Gpio  device is in. Unlike other generics, we must control
this parameter and ensure that a client can never fabricate it.

The state!  macro generates types that represent the states a Gpio  can be in:

states! { 
  Uninitialized, Input, Output, Alt 
} 
 
// Each parameter expands to an `enum` that looks like: 
enum Input { } 

This is also weird; why would we create an enum  with no variants? enum ’s with no variants
have a nice property: they can never be instan�ated. In this way, these types act purely as
markers. No one can ever pass us a value of type Input  because such a value can never be
constructed. They exist purely at the type-level.

We can then implement methods corresponding to valid transi�ons given that a Gpio  is in a
certain state:

https://doc.rust-lang.org/nightly/std/marker/struct.PhantomData.html


impl Gpio<Output> { 
    /// Sets (turns on) the pin. 
    pub fn set(&mut self) { ... } 
 
    /// Clears (turns off) the pin. 
    pub fn clear(&mut self) { ... } 
} 
 
impl Gpio<Input> { 
    /// Reads the pin's value. 
    pub fn level(&mut self) -> bool { ... } 
} 

This ensures that a Gpio  can only be set  and clear ed when it is a Gpio<Output>  and its
level  read when it is a Gpio<Input> . Perfect! But how do we actually transi�on between

states? Hello, Gpio::transition() !

impl<T> Gpio<T> { 
    fn transition<S>(self) -> Gpio<S> {
        Gpio { 
            pin: self.pin, 
            registers: self.registers, 
            _state: PhantomData 
        } 
    } 
} 

This method lets us transi�on a Gpio  from any state to any other state. Given a Gpio  in
state T , this method returns a Gpio  in state S . Note that it works for all S  and T . We
must be very careful when calling this method. When called, we are encoding the
specifica�on of a transi�on in the state diagram. If we get the specifica�on or encoding
wrong, our driver is wrong.

To use the transition()  method, we need to tell Rust which type we want as an output S  in
Gpio<S> . We do this by giving Rust enough informa�on so that it can infer the S  type. For

instance, consider the implementa�on of the into_output  method:

pub fn into_output(self) -> Gpio<Output> { 
    self.into_alt(Function::Output).transition() 
} 

This method requires its return type to be Gpio<Output> . When the Rust type system inspects
the call to transition() , it will search for a Gpio::transition()  method that returns a
Gpio<Output>  to sa�sfy the requirement. Since our transition  method returns Gpio<S>  for

any S , Rust will replace S  with Output  and use that method. The result is that we’ve
transformed our Gpio<Alt>  (from the into_alt()  call) into a Gpio<Output> .



What would go wrong if a client fabricates states? (fake-states)

Consider what would happen if we let the user choose the ini�al state for a Gpio

structure. What could go wrong?

Why is this only possible with Rust?

No�ce that the into_  transi�on methods take a Gpio  by move. This means that once a
Gpio  is transi�oned into a another state, it can never be accessed in the previous state.

Rust’s move seman�cs make this possible. As long as a type doesn’t implement Clone ,
Copy , or some other means of duplica�on, there is no coming back from a transi�on. No

other language, not even C++, affords us this guarantee at compile-�me.

Implement the Driver

Implement the unimplemented!()  methods in lib/pi/src/gpio.rs . The signatures on these
items indicate their expected func�onality. You’ll need to read the GPIO documenta�on
(page 89, sec�on 6 of the BCM2837 ARM Peripherals Manual) to implement your driver.
Remember that you can use cargo check  to type-check the library without actually compiling
it.

Testing Your Driver

We’ll again write code in kern/src/main.rs  to ensure that our driver works as expected.

Instead of reading/wri�ng to raw memory addresses, use your new GPIO driver to set and
clear GPIO pin 16. Your code should get a lot cleaner. Compile the kernel, load it onto the
MicroSD card as kernel8.img , run it on the Raspberry Pi, and ensure your LED blinks as
before.

Now, connect more LEDs to your Raspberry Pi. Use GPIO pins 5, 6, 13, 19, and 26. Refer to
the pin numbering diagram from assignment 0 to determine their physical loca�on. Have
your kernel blink all of the LEDs in a pa�ern of your choice.

Which pa�ern did you choose? (led-pa�ern)

What pa�ern did you have your LEDs blink in? If you haven’t yet decided, one fun idea is
to have them imitate a “loading spinner” by arranging the LEDs in a circle and turning

them on/off in a sequen�al, circular pa�ern. 

Once your GPIO driver is working as expected, proceed to the next subphase.

Subphase D: UART

https://cs140e.sergio.bz/docs/BCM2837-ARM-Peripherals.pdf
https://cs140e.sergio.bz/assignments/0-blinky/#powering-the-pi


In this subphase, you will write a device driver for the mini UART device on the Raspberry Pi.
You will primarily be working in lib/pi/src/uart.rs  and kern/src/main.rs . The mini UART is
documented on page 8 and page 10 (sec�ons 2.1 and 2.2) of the BCM2837 ARM Peripherals
Manual.

UART: Universal Asynchronous RX/TX

A UART, or universal asynchronous receiver-transmi�er, is a device and serial protocol for
communica�ng over two wires. These are the two wires (rx/tx) that you used in phase 1 of
lab 0 to connect the UART device on the CP2102 USB module to the UART device on the Pi.
You can send any kind of data over UART: text, binaries, images, anything! As an example, in
the next subphase, you’ll implement a shell by reading from the UART device on the Pi and
wri�ng to the UART device on the CP2102 USB module. In phase 3, you’ll read from the
UART on the Pi to download a binary being sent via the UART on the CP2102 USB module.

The UART protocol has several configura�on parameters, and both the receiver and
transmi�er need to be configured iden�cally to communicate. These parameters are:

Data Size: length of a single data frame (8 or 9 bits)
Parity Bit: whether to send a parity (checksum) bit a�er the data
Stop Bits: how many bits to use to signal the end of the data (1 or 2)
Baud Rate: transmission rate in bits/second

The mini UART on the Pi does not support parity bits and only supports 1 stop bit. As such,
only the baud rate and data frame length need to be configured. To learn more about UART,
see the Basics of UART Communica�on ar�cle.

Implement the Driver

At this point, you have all of the tools to write a device driver without addi�onal background
informa�on (congratula�ons! 🎉).

Implement the mini UART device driver in lib/pi/src/uart.rs . You’ll need to complete the
defini�on of the Registers  structure. Ensure that you use the Volatile  type with the
minimal set of capabili�es for each register: read-only registers should use ReadVolatile , write-
only registers should use WriteVolatile , and reserved space should use Reserved . Then,
ini�alize the device in new()  by se�ng the baud rate to 115200  (a divider of 270 ) and data
length to 8  bits. Finally, implement the remaining unimplemented!()  methods and the
fmt::Write , io::Read  and io::Write  traits for MiniUart .

 Hint

You’ll need to write to the LCR , BAUD , and CNTL  registers in new .

https://cs140e.sergio.bz/docs/BCM2837-ARM-Peripherals.pdf
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://cs140e.sergio.bz/notes/lec4/uart-basics.pdf


 Hint

Use your GPIO driver from the previous subphase.

Testing Your Driver

Test your driver by wri�ng a simple “echo” program in kern/src/main.rs : sit in a hot loop
wri�ng out every byte you read in. In pseudocode, this looks like:

loop { 
  write_byte(read_byte()) 
} 

Use screen /dev/<your-path> 115200  to communicate over UART. screen  sends every keypress
over the TTY, so if your echo program works correctly, you’ll see every character you type. It
might help to send an extra character or two each �me you receive a byte to convince
yourself things are working as you expect:

loop { 
    write_byte(read_byte()) 
    write_str("<-") 
} 

Once your driver works as expected, proceed to the next subphase.

Subphase E: The Shell

In this subphase, you’ll use your new UART driver to implement a simple shell that will be the
interface to your opera�ng system. You will be working in kern/src/console.rs ,
kern/src/shell.rs , and kernel/src/main.rs .

The Console

To write our shell, we’ll need some no�on of a global default input and output. Unix and
friends typically refer to this is as stdin  and stdout ; we’ll be calling it Console . Console  will
allow us to implement the kprint!  and kprintln!  macros, our kernel-space versions of the
familiar print!  and println! , and give us a default source for reading user input. We’ll use
Console  and these macros to implement our shell.

Take a peek at kernel/src/console.rs . The file contains an unfinished implementa�on of the
Console  struct. Console  is a singleton wrapper around a MiniUart : only one instance of
Console  will ever exist in our kernel. That instance will be globally available, for use



anywhere and by anything. This will allow us to read and write to the mini UART without
explicitly passing around an instance of MiniUart  or Console .

Global Mutability

The no�on of a globally mutable structure is a scary thought, especially in the face of Rust.
A�er all, Rust doesn’t allow more than one mutable reference to a value, so how can we
possibly convince it to allow as many as we want? The trick, of course, relies on unsafe . The
idea is as follows: we’ll tell Rust that we’re only going to read a value by using an immutable
reference, but what we actually do is use unsafe  to “cast” that immutable reference to a
mutable reference. Because we can create as many immutable references as we want, Rust
will be none the wiser, and we’ll have all of the mutable references we desire!

Such a func�on might look like this:

// This function must never exist. 
fn make_mut<T>(value: &T) -> &mut T { 
    unsafe { /* magic */ } 
} 

Your alarm bells should be ringing: what we’ve proposed so far is wildly unsafe. Recall that we
s�ll need to ensure that everything we do in unsafe  upholds Rust’s rules. What we’ve
proposed thus far clearly does not. As it stands, we’re viola�ng the “at most one mutable
reference at a �me” rule. The rule states that at any point in the program, a value should have
at most one mutable reference to it.

The key insight to maintaining this rule while mee�ng our requirements is as follows: instead
of the compiler checking the rule for us with its borrow and ownership checker, we will
ensure that the rule is upheld dynamically, at run-�me. As a result, we’ll be able to share
references to a structure as many �mes as we want (via an &  reference) while also being
able to safely retrieve a mutable reference when we need it (via our &T -> &mut T  dynamic
borrow checking func�on).

There are many concrete implementa�ons of this idea. One such implementa�on ensures
that only one mutable reference is returned at a �me using a lock:

fn lock<T>(value: &T) -> Locked<&mut T> { 
 unsafe { lock(value); cast value to Locked<&mut T> } 
} 
 
impl Drop for Locked<&mut T> { 
 fn drop(&mut self) { unlock(self.value) } 
} 



This is known as Mutex in the standard library. Another way is to abort the program if more
than one mutable reference is about to be created:

fn get_mut<T>(value: &T) -> Mut<&mut T> { 
   unsafe { 
      if ref_count(value) != 0 { panic!() } 
      ref_count(value) += 1; 
      cast value to Mut<&mut T> 
   } 
} 
 
impl Drop for Mut<&mut T> { 
   fn drop(&mut self) { ref_count(value) -= 1; } 
} 

This is RefCell::borrow_mut(). And yet another is to only return a mutable reference if it is
known to be exclusive:

fn get_mut<T>(value: &T) -> Option<Mut<&mut T>> { 
   unsafe { 
      if ref_count(value) != 0 { None }
      else { 
         ref_count(value) += 1; 
         Some(cast value to Mut<&mut T>) 
      } 
   } 
} 
 
impl Drop for Mut<&mut T> { 
   fn drop(&mut self) { ref_count(value) -= 1; } 
} 

This is RefCell::try_borrow_mut(). All of these examples implement some form of “interior
mutability”: they allow a value to be mutated through an immutable reference. For our
Console , we’ll be using Mutex  to accomplish the same goal. Since the std::Mutex

implementa�on requires opera�ng system support, we’ve implemented our own Mutex  in
kern/src/mutex.rs . Our implementa�on is correct for now, but we’ll need to fix it when we

introduce caching or concurrency to con�nue to uphold Rust’s rules. You don’t need to
understand the Mutex  implementa�on for now, but you should understand how to use one.

The global singleton is declared as CONSOLE  in kern/src/console.rs . The global variable is used
by the kprint!  and kprintln!  macros defined below below. Once you’ve implemented
Console , you’ll be able to use kprint!  and kprintln!  to print to the console. You’ll also be

able to use CONSOLE  to globally access the console.

 Rust also requires static  globals to be Sync .

https://doc.rust-lang.org/nightly/std/sync/struct.Mutex.html
https://doc.rust-lang.org/nightly/core/cell/struct.RefCell.html#method.borrow_mut
https://doc.rust-lang.org/nightly/core/cell/struct.RefCell.html#method.try_borrow_mut


In order to store a value of type T  in a static  global, T  must implement Sync . This is
because Rust also guarantees data race safety at compile-�me. Because global values can
be accessed from any thread, Rust must ensure that those accesses are thread-safe. The
Send  and Sync  traits, along with Rust’s ownership system, ensure data race freedom.

Why should we never return an &mut T  directly? (drop-container)

You’ll no�ce that every example we’ve provided wraps the mutable reference in a
container and then implements Drop  for that container. What would go wrong if we
returned an &mut T  directly instead?

Where does the write_fmt  call go? (write-fmt)

The _print  helper func�on calls write_fmt  on an instance of MutexGuard<Console> , the
return value from Mutex<Console>::lock() . Which type will have its write_fmt  method
called, and where does the method implementa�on come from?

Implement and Test Console

implement all of the unimplemented!()  methods in kern/src/console.rs . once you’ve
implemented everything, use the kprint!  and kprintln!  macros in kern/src/main.rs  to write
to the console when you receive a character. you can use these macros exactly like print!

and println! . use screen /dev/<your-path> 115200  to communicate with your pi and ensure
that your kernel works as expected.

 If this were C…

The fact that we get a println!  implementa�on for free with zero effort is just another
advantage to using Rust. If this were C, we’d need to implement printf  ourselves. In
Rust, the compiler provides a generic, abstracted, and safe OS-independent
implementa�on. Whew!

 Hint

Your Console  implementa�ons should be very short: about a line each.

Implement the Shell



‘Finished’ Product

You’re now ready to implement the shell in kern/src/shell.rs . We’ve provided a Command

structure for your use. The Command::parse()  method provides a simple command-line
argument parser, returning a Command  struct. The parse method splits the passed in string on
spaces and stores all of the non-empty arguments in the args  field as a StackVec  using the
passed in buf  as storage. You must implement Command::path()  yourself.

Use all of your available libraries ( Command , StackVec , Console  via CONSOLE , kprint! ,
kprintln! , and anything else!) to implement a shell in the shell  func�on. Your shell should

print the prefix  string on each line it waits for input. In the GIF above, for instance, "> "  is
being used as the prefix. Your shell should then read a line of input from the user, parse the
line into a command, and a�empt to execute it. It should do this ad-infinitum. Since our
opera�ng system is only just beginning, we can’t run any interes�ng commands just yet. We
can, however, build known commands like echo  into the shell.

To complete your implementa�on, your shell should…

implement the echo  built-in: echo $a $b $c  should print $a $b $c

accept both \r  and \n  as “enter”, marking the end of a line
accept both backspace and delete (ASCII 8  and 127 ) to erase a single character
ring the bell (ASCII 7 ) if an unrecognized non-visible character is sent to it
print unknown command: $command  for an unknown command $command

disallow backspacing through the prefix
disallow typing more characters than allowed
accept commands at most 512 bytes in length
accept at most 64 arguments per command
start a new line, without error, with the prefix  if the user enters an empty command
print error: too many arguments  if the user passes in too many arguments

https://tc.gts3.org/cs3210/2020/spring/_images/shell.gif


Test your implementa�on by calling your new shell()  func�on in kern/src/main.rs . Minus
the “SOS” banner, you should be able to replicate the GIF above. You should also be able to
test all of the requirements we’ve set. Once your shell works as expected, revel in your
accomplishments. Then, proceed to the next phase.

 Hint

A byte literal, b'a'  is the u8  ASCII value for a character 'a' .

 Hint

Use \u{b}  in a string literal to print any character with ASCII byte value b .

 Hint

You must print both \r  and \n  to begin a new line at the line start.

 Hint

To erase a character, backspace, print a space, then backspace again.

 Hint

Use StackVec  to buffer the user’s input.

 Hint

You’ll find the core::str::from_u�8() func�on useful.

 How does your shell �e the many pieces together? (shell-lookback)

Your shell makes use of much of the code you’ve wri�en. Briefly explain: which pieces
does it makes use of and in what way?

Phase 3: Boot ‘em Up

In this phase, you’ll use everything you’ve wri�en thus far to implement a bootloader for your
Raspberry Pi. You’ll be working primarily in boot/src/main.rs .

You’ve likely become frustrated with the monotonous mo�ons of swapping MicroSD cards to
load a new binary onto your Pi. The bootloader you will write in this phase eliminates that
process en�rely. You’ll replace the binary on the MicroSD one more �me, this �me with the

https://doc.rust-lang.org/nightly/core/str/fn.from_utf8.html


bootloader. From then on, you can load new binaries remotely from your computer without
ever touching the MicroSD card again.

The bootloader itself is a “kernel” of sorts that accepts XMODEM file transfers over UART. It
writes the data received into memory at a known address and then executes it. We’ll use our
ttywrite  u�lity to send it binaries. As a result, the process to load a new binary onto the Pi

will be as simple as:

1. Rese�ng the Pi to start the bootloader.
2. Run make transmit  command, which will build your kernel and transmit it with

ttywrite -i build/kern.bin /dev/ttyUSB0  command.

Loading Binaries

By default, the Raspberry Pi 3 loads files named kernel8.img  at address 0x80000 . Said
another way, the Pi will sequen�ally copy the contents of kernel8.img  to 0x80000  and, a�er
some ini�aliza�on, set the ARM’s program counter to 0x80000 . As a result, we must ensure
that our binary expects to be loaded at this address. This means that all of the addresses in
the binary should begin at 0x80000 .

Because the linker is what decides the addresses for all symbols in our binary, we must
somehow inform the linker of this desire. To do this, we use a linker script: a file read by the
linker that describes how we want it to assign addresses to symbols in our binary. Our
kernel’s linker script can be found in kern/.cargo/layout.ld . You’ll no�ce the address 0x80000

on the second line. Indeed, this line instructs the linker to begin alloca�ng addresses at
0x80000 .

To maintain compa�bility with these defaults, our bootloader will also load binaries at address
0x80000 . But this raises an issue: if our bootloader’s binary is at address 0x80000 , loading a

different binary at the same address will result in overwri�ng our bootloader as we’re
execu�ng it! To avoid this conflict, we must use different start addresses for the bootloader
and the binaries it loads. We’d like to maintain compa�bility with the Pi’s defaults, so we’ll
need to change the start address of the bootloader. How?

Making Space

The first step is to choose a new address. As you can see in boot/.cargo/layout.ld , we’ve
chosen 0x4000000  as the start address for our bootloader. While this fixes the addresses in
the binary, the Pi will con�nue to load it at 0x80000 . Thankfully, we can ask the Pi to load our
binary at a different address via a kernel_address  parameter in the firmware’s config.txt .
Ensure you modify your config.txt  in microSD to have kernel_address=0x4000000  line.



As a result of this change, the memory between 0x80000  and 0x4000000  will be en�rely
unused by the bootloader, and we can load binaries up to 0x4000000 - 0x80000  bytes in size
without conflict.

 Is 63.5MiB really enough? (small-kernels)

You might be thinking that the free space we’ve set apart isn’t enough. This is a fair
concern. One way to answer the ques�on is to look at the file size of kernels from
successful opera�ng systems. Would they fit?

Determine how large the kernel binary is for the opera�ng system you’re running now.
On newer versions of macOS, the binary is /System/Library/Kernels/kernel . On older
versions of macOS, the binary is /mach_kernel . On Linux, the binary is usually located in
/boot/  and is named either vmlinuz , vmlinux , or bzImage . How big is your kernel’s

binary? Would it fit in the 63.5MiB free space we’ve created?

Implement the Bootloader

Implement the bootloader in boot/src/main.rs . We’ve declared the bootloader’s start address,
the loaded binary’s start address, and the maximum binary size in const  declara�ons at the
top of the file. We’ve also provided a jump_to  func�on that uncondi�onally branches to the
address addr . This has the effect of se�ng the program counter to that address. Your
bootloader should use these declara�ons along with your exis�ng code from the pi  and
xmodem  libraries to receive a transmission over UART and write it to the memory address the

binary expects to be loaded at. When the transmission is complete, your bootloader should
execute the new binary.

Be aware that your bootloader should con�nuously a�empt to ini�ate an XMODEM
recep�on by se�ng a low �meout value (say, 750ms) and a�emp�ng a new recep�on if a
�meout occurs. If a recep�on fails for any other reason, print an error message and try again.
Once you’ve implemented the bootloader, test it by sending your kernel binary from
kern/build/kernel.bin  to your Pi using your ttywrite  u�lity. If all is well, you should see your

shell when you screen  into your Pi.

Why is the �meout necessary? (bootloader-�meout)

Without the bootloader �ming out and retrying a recep�on, it is possible for the
transmi�er to stall indefinitely under some condi�ons. What are those condi�ons, and
why would the transmi�er stall indefinitely?

 config.txt

Remember to use the version of config.txt  compa�ble with bootloader binaries!



 Hint

Our reference main()  func�on is 15 lines of code.

 Hint

You’ll find the core::slice::from_raw_parts_mut() func�on useful.

 Hint

The &mut [u8]  type implements io::Write .

Submission

Once you’ve completed the tasks above, you’re done and ready to submit! Congratula�ons!

Ensure you’ve commi�ed your changes. Any uncommi�ed changes will not be visible to us,
thus unconsidered for grading.

Before submi�ng, check if you’ve answered every ques�on and passed every unit tests for
the libraries. Note that there are no unit tests for pi  and kernel . You’re responsible for
ensuring that they work as expected.

When you’re ready, push a commit to your GitHub repository with a tag named lab2-done .

# submit lab1 
$ git tag lab2-done 
$ git push --tags 

https://doc.rust-lang.org/nightly/core/slice/fn.from_raw_parts_mut.html

